
Model manipulation
Author(s): Vanja Vlasov, Systems Biochemistry Group, LCSB, University of Luxembourg,

Thomas Pfau, Systems Biology Group, LSRU, University of Luxembourg.

Reviewer(s): Ines Thiele, Systems Biochemistry Group, LCSB, University of Luxembourg.

Catherine Clancy, Systems Biochemistry Group, LCSB, University of Luxembourg.

Stefania Magnusdottir, Molecular Systems Physiology Group, LCSB, University of Luxembourg.

INTRODUCTION
In this tutorial, we will do a manipulation with a simple model of the first few reactions of the glycolysis metabolic

pathway as created in the "Model Creation" tutorial.

Glycolysis is the metabolic pathway that occurs in most organisms in the cytosol of the cell. First, we will use the

beginning of that pathway to create a simple constraint-based metabolic network (Figure 1).

Figure 1: A small metabolic network consisting of the seven reactions in the glycolysis pathway.

At the beginning of the reconstruction, the initial step is to assess the integrity of the draft reconstruction.

Furthermore, an evaluation of accuracy is needed: check necessity of each reaction and metabolite, the

accuracy of the stoichiometry, and direction and reversibility of the reactions.

The metabolites structures and reactions are from the Virtual Metabolic Human database (VMH, http://vmh.life).

After creating or loading the model and to simulate different model conditions, the model can be modified, such

as:

• Creating, adding and handling reactions;

• Adding exchange, sink and demand reactions;

• Altering reaction bounds;

• Altering reactions;

• Removing reactions and metabolites;

• Searching for duplicates and comparison of two models;

• Changing the model objective;

• Changing the direction of reaction(s);

• Creating gene-reaction-associations ('GPRs');

• Extracting a subnetwork

1

http://vmh.life/

EQUIPMENT SETUP
Start CobraToolbox

initCobraToolbox(false) % false, as we don't want to update;

 _____ _____ _____ _____ _____ |
 / ___| / _ \ | _ \ | _ \ / ___ \ | COnstraint-Based Reconstruction and Analysis
 | | | | | | | |_| | | |_| | | |___| | | The COBRA Toolbox - 2017
 | | | | | | | _ { | _ / | ___ | |
 | |___ | |_| | | |_| | | | \ \ | | | | | Documentation:
 _____| _____/ |_____/ |_| _\ |_| |_| | http://opencobra.github.io/cobratoolbox
 |

 > Checking if git is installed ... Done.
 > Checking if the repository is tracked using git ... Done.
 > Checking if curl is installed ... Done.
 > Checking if remote can be reached ... Done.
 > Initializing and updating submodules ... Done.
 > Adding all the files of The COBRA Toolbox ... Done.
 > Define CB map output... set to svg.
 > Retrieving models ... Done.
 > TranslateSBML is installed and working properly.
 > Configuring solver environment variables ...
 - [*---] ILOG_CPLEX_PATH: /opt/ibm/ILOG/CPLEX_Studio1271/cplex/matlab/x86-64_linux
 - [*---] GUROBI_PATH: /opt/gurobi702/linux64/matlab
 - [----] TOMLAB_PATH : --> set this path manually after installing the solver (see instructions)
 - [----] MOSEK_PATH : --> set this path manually after installing the solver (see instructions)
 Done.
 > Checking available solvers and solver interfaces ... Done.
 > Setting default solvers ... Done.
 > Saving the MATLAB path ... Done.
 - The MATLAB path was saved as ~/pathdef.m.

 > Summary of available solvers and solver interfaces

 Support LP MILP QP MIQP NLP
 --
 cplex_direct full 0 0 0 0 -
 dqqMinos full 1 - - - -
 glpk full 1 1 - - -
 gurobi full 1 1 1 1 -
 ibm_cplex full 1 1 1 - -
 matlab full 1 - - - 1
 mosek full 0 0 0 - -
 pdco full 1 - 1 - -
 quadMinos full 1 - - - 1
 tomlab_cplex full 0 0 0 0 -
 qpng experimental - - 1 - -
 tomlab_snopt experimental - - - - 0
 gurobi_mex legacy 0 0 0 0 -
 lindo_old legacy 0 - - - -
 lindo_legacy legacy 0 - - - -
 lp_solve legacy 1 - - - -
 opti legacy 0 0 0 0 0
 --
 Total - 8 3 4 1 2

 + Legend: - = not applicable, 0 = solver not compatible or not installed, 1 = solver installed.

 > You can solve LP problems using: 'dqqMinos' - 'glpk' - 'gurobi' - 'ibm_cplex' - 'matlab' - 'pdco' - 'quadMinos' - 'lp_solve'

2

 > You can solve MILP problems using: 'glpk' - 'gurobi' - 'ibm_cplex'
 > You can solve QP problems using: 'gurobi' - 'ibm_cplex' - 'pdco' - 'qpng'
 > You can solve MIQP problems using: 'gurobi'
 > You can solve NLP problems using: 'matlab' - 'quadMinos'

 > Checking for available updates ...
 > The COBRA Toolbox is up-to-date.

PROCEDURE

Generate a network
A constraint-based metabolic model contains the stoichiometric matrix (S) with reactions and metabolites [1].

S is a stoichiometric representation of metabolic networks corresponding to the reactions in the biochemical

pathway. In each column of the S is a biochemical reaction (n) and in each row is a precise metabolite (m).

There is a stoichiometric coefficient of zero, which means that metabolite does not participate in that distinct

reaction. The coefficient also can be positive when the appropriate metabolite is produced, or negative for every

metabolite consumed [1].

Generate a model using the createModel() function:

ReactionFormulas = {'glc_D[e] -> glc_D[c]',...
 'glc_D[c] + atp[c] -> h[c] + adp[c] + g6p[c]',...
 'g6p[c] <=> f6p[c]',...
 'atp[c] + f6p[c] -> h[c] + adp[c] + fdp[c]',...
 'fdp[c] + h2o[c] -> f6p[c] + pi[c]',...
 'fdp[c] -> g3p[c] + dhap[c]',...
 'dhap[c] -> g3p[c]'};
ReactionNames = {'GLCt1r', 'HEX1', 'PGI', 'PFK', 'FBP', 'FBA', 'TPI'};
lowerbounds = [-20, 0, -20, 0, 0, -20, -20];
upperbounds = [20, 20, 20, 20, 20, 20, 20];
model = createModel(ReactionNames, ReactionNames, ReactionFormulas,...

3

 'lowerBoundList', lowerbounds, 'upperBoundList', upperbounds);

GLCt1r glc_D[e] <=> glc_D[c]
HEX1 glc_D[c] + atp[c] -> h[c] + adp[c] + g6p[c]
PGI g6p[c] <=> f6p[c]
PFK atp[c] + f6p[c] -> h[c] + adp[c] + fdp[c]
FBP fdp[c] + h2o[c] -> f6p[c] + pi[c]
FBA fdp[c] <=> g3p[c] + dhap[c]
TPI dhap[c] <=> g3p[c]

We can now have a look at the different model fields created. The stoichiometry is stored in the S field of the

model, which was described above. Since this is commonly a sparse matrix (i.e. it contains a lot of zeros), it may

be useful for your understanding to display the full representation:

full(model.S)

ans =
 -1 0 0 0 0 0 0
 1 -1 0 0 0 0 0
 0 -1 0 -1 0 0 0
 0 1 0 1 0 0 0
 0 1 0 1 0 0 0
 0 1 -1 0 0 0 0
 0 0 1 -1 1 0 0
 0 0 0 1 -1 -1 0
 0 0 0 0 -1 0 0
 0 0 0 0 1 0 0

It is required for a model to consist of the descriptive fields: model.mets and model.rxns, which represent

the metabolites and the reactions respectively.

model.mets

ans =
 'glc_D[e]'
 'glc_D[c]'
 'atp[c]'
 'h[c]'
 'adp[c]'
 'g6p[c]'
 'f6p[c]'
 'fdp[c]'
 'h2o[c]'
 'pi[c]'
 'g3p[c]'
 'dhap[c]'

model.rxns

ans =
 'GLCt1r'
 'HEX1'
 'PGI'
 'PFK'
 'FBP'
 'FBA'
 'TPI'

4

The fields in a COBRA model are commonly column vectors, which is important to note when writing functions

manipulating these fields.

There are a few more fields present in each COBRA model:

model.lb, indicating the lower bounds of each reaction, and model.ub indicating the upper bound of a

reaction.

% this displays an array with reaction names and flux bounds.
[{'Reaction ID', 'Lower Bound', 'Upper Bound'};...
 model.rxns, num2cell(model.lb), num2cell(model.ub)]

ans =
 'Reaction ID' 'Lower Bound' 'Upper Bound'
 'GLCt1r' [-20] [20]
 'HEX1' [0] [20]
 'PGI' [-20] [20]
 'PFK' [0] [20]
 'FBP' [0] [20]
 'FBA' [-20] [20]
 'TPI' [-20] [20]

% This is a convenience function which does pretty much the same as the line above.
printFluxBounds(model);

Reaction ID Lower Bound Upper Bound
 GLCt1r -20.000 20.000
 HEX1 0.000 20.000
 PGI -20.000 20.000
 PFK 0.000 20.000
 FBP 0.000 20.000
 FBA -20.000 20.000
 TPI -20.000 20.000

Before we start to modify the model, it might be useful to store in the workspace some of the current properties

of the model:

mets_length = length(model.mets)

mets_length = 12

rxns_length = length(model.rxns)

rxns_length = 7

Creating, adding and handling reactions
If we want to add a reaction to the model or modify an existing reaction use the function addReaction.

We will add to the model some more reactions from glycolysis. There are two different approaches to adding

reactions to a model:

1. The formula approach

2. The list appraoch

5

The formula approach

model = addReaction(model, 'GAPDH',...
 'reactionFormula', 'g3p[c] + nad[c] + 2 pi[c] -> nadh[c] + h[c] + 13bpg[c]');

GAPDH 2 pi[c] + g3p[c] + nad[c] -> h[c] + nadh[c] + 13bpg[c]

model = addReaction(model, 'PGK',...
 'reactionFormula', '13bpg[c] + adp[c] -> atp[c] + 3pg[c]');

PGK adp[c] + 13bpg[c] -> atp[c] + 3pg[c]

model = addReaction(model, 'PGM', 'reactionFormula', '3pg[c] <=> 2pg[c]');

PGM 3pg[c] <=> 2pg[c]

Display the stoichiometric matrix after adding reactions (note the enlarge link when you move your mouse over

the output to display the full matrix):

full(model.S)

ans =
 -1 0 0 0 0 0 0 0 0 0
 1 -1 0 0 0 0 0 0 0 0
 0 -1 0 -1 0 0 0 0 1 0
 0 1 0 1 0 0 0 1 0 0
 0 1 0 1 0 0 0 0 -1 0
 0 1 -1 0 0 0 0 0 0 0
 0 0 1 -1 1 0 0 0 0 0
 0 0 0 1 -1 -1 0 0 0 0
 0 0 0 0 -1 0 0 0 0 0
 0 0 0 0 1 0 0 -2 0 0

• one extra column is added (for added reaction) and 5 new rows (for nadh, nad, 13bpg, 2pg and 3pg

metabolites)

If you want to search for the indecies of reactions in the model, and change the order of the select reactions,

use the following functions:

rxnID = findRxnIDs(model, model.rxns)

rxnID =
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10

model.rxns

6

ans =
 'GLCt1r'
 'HEX1'
 'PGI'
 'PFK'
 'FBP'
 'FBA'
 'TPI'
 'GAPDH'
 'PGK'
 'PGM'

model = moveRxn(model, 8, 1);
model.rxns

ans =
 'GAPDH'
 'GLCt1r'
 'HEX1'
 'PGI'
 'PFK'
 'FBP'
 'FBA'
 'TPI'
 'PGK'
 'PGM'

While the function moveRxn does not modify the network structure it can be useful in keeping a model tidy.

The list approach

model = addReaction(model, 'GAPDH2',...
 'metaboliteList', {'g3p[c]', 'nad[c]', 'pi[c]', '13bpg[c]', 'nadh[c]', 'h[c]' },...
 'stoichCoeffList', [-1; -1; -2; 1; 1; 1], 'reversible', false);

• The addReaction function has the ability to recognize duplicate reactions. No reaction added here

since the reaction is recognised to already exist in the model.

Since the fourth reaction we attempted to add to the model was a duplicate, the number of the reactions in the

model should only of increased by three and the number of metabolites in the model should of only increaed by

five (13bpg, nad, nadh, 23bpg and 2pg).

assert(length(model.rxns) == rxns_length + 3)
assert(length(model.mets) == mets_length + 5)

Adding exchange, sink and demand reactions
The are three specific types of reactions in a COBRA model that use and recycle accumulated metabolites, or

produce the required metabolites:

1. Exchange reactions - are reactions that move metabolites across in silico compartments. These in silico

compartments are representive of intra- and inter- cellular membranes.

7

2. Sink reactions - The metabolites, produced in reactions that are outside of an ambit of the system or in

unknown reactions, are supplied to the network with reversible sink reactions.

3. Demand reactions - Irreversible reactions added to the model to consume metabolites that are deposited

in the system.

There are two ways to implement these type of reactions:

1. Use the addReaction function, detailing the stoichiometric coefficient:

model = addReaction(model, 'EX_glc_D[e]', 'metaboliteList', {'glc_D[e]'} ,...
 'stoichCoeffList', [-1]);

EX_glc_D[e] glc_D[e] <=>

To find exchange reactions in the model use the findExcRxns function:

% determines whether a reaction is a general exchange reaction and
% whether its an uptake.
[selExc, selUpt] = findExcRxns(model, 0, 1)

selExc =
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 1
selUpt =
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

2. Use a utility function to create the specific type of reaction: addExchangeRxn, addSinkReactions,

addDemandReaction.

model = addExchangeRxn(model, {'glc_D[e]', 'glc_D[c]'})

EX_glc_D[e] glc_D[e] <=>
EX_glc_D[c] glc_D[c] <=>
model =
 rxns: {12×1 cell}
 S: [17×12 double]
 lb: [12×1 double]
 ub: [12×1 double]

8

 c: [12×1 double]
 mets: {17×1 cell}
 b: [17×1 double]
 rules: {12×1 cell}
 genes: {0×1 cell}
 osense: -1
 csense: [17×1 char]
 rxnGeneMat: [12×0 double]
 rxnNames: {12×1 cell}
 subSystems: {12×1 cell}
 metNames: {17×1 cell}
 grRules: {12×1 cell}

model = addSinkReactions(model, {'13bpg[c]', 'nad[c]'})

sink_13bpg[c] 13bpg[c] <=>
sink_nad[c] nad[c] <=>
model =
 rxns: {14×1 cell}
 S: [17×14 double]
 lb: [14×1 double]
 ub: [14×1 double]
 c: [14×1 double]
 mets: {17×1 cell}
 b: [17×1 double]
 rules: {14×1 cell}
 genes: {0×1 cell}
 osense: -1
 csense: [17×1 char]
 rxnGeneMat: [14×0 double]
 rxnNames: {14×1 cell}
 subSystems: {14×1 cell}
 metNames: {17×1 cell}
 grRules: {14×1 cell}

 model = addDemandReaction(model, {'dhap[c]', 'g3p[c]'})

DM_dhap[c] dhap[c] ->
DM_g3p[c] g3p[c] ->
model =
 rxns: {16×1 cell}
 S: [17×16 double]
 lb: [16×1 double]
 ub: [16×1 double]
 c: [16×1 double]
 mets: {17×1 cell}
 b: [17×1 double]
 rules: {16×1 cell}
 genes: {0×1 cell}
 osense: -1
 csense: [17×1 char]
 rxnGeneMat: [16×0 double]
 rxnNames: {16×1 cell}
 subSystems: {16×1 cell}
 metNames: {17×1 cell}
 grRules: {16×1 cell}

9

Setting a ratio between the reactions
It is important to emphasise that previous knowledge base information should be taken into account when

generating a model. If this information is omited, the analysis of a model could be adversely altered and

consequent results not representative of the network.

For instance, if it is known that the flux of one reaction is X times the flux of another reaction, it is recommended

to 'couple' (i.e., set a ratio) the reactions in the model.

E.g.

model = addRatioReaction (model, {'EX_glc_D[c]', 'EX_glc_D[e]'}, [1; 2])

model =
 rxns: {16×1 cell}
 S: [18×16 double]
 lb: [16×1 double]
 ub: [16×1 double]
 c: [16×1 double]
 mets: {18×1 cell}
 b: [18×1 double]
 rules: {16×1 cell}
 genes: {0×1 cell}
 osense: -1
 csense: [18×1 char]
 rxnGeneMat: [16×0 double]
 rxnNames: {16×1 cell}
 subSystems: {16×1 cell}
 metNames: {18×1 cell}
 grRules: {16×1 cell}
 note: 'EX_glc_D[c] andEX_glc_D[e]are set to have a ratio of1:2.'

Constraining the flux boundaries of a reaction
In order to respect the transport and exchange potential of a particular metabolite, or to resemble the different

conditions in the model, we frequently need to set appropriate limits of the reactions.

model = changeRxnBounds(model, 'EX_glc_D[e]', -18.5, 'l');

Modifying reactions
The addReaction function is also a good choice to modify reactions. By supplying to the function a new

stoichiometry, the old will be overwritten.

For example, further up, we added the wrong stoichiometry for the GAP-Dehydrogenase with a coefficient of 2

for phosphate. Print the reaction to visulize:

printRxnFormula(model, 'rxnAbbrList', 'GAPDH');

GAPDH 2 pi[c] + g3p[c] + nad[c] -> h[c] + nadh[c] + 13bpg[c]

Correct the reaction using addReaction: with the corrected stoichiometry:

model = addReaction(model, 'GAPDH',...
 'metaboliteList', {'g3p[c]', 'nad[c]', 'pi[c]', '13bpg[c]', 'nadh[c]','h[c]' },...
 'stoichCoeffList', [-1; -1; -1; 1; 1; 1]);

10

GAPDH pi[c] + g3p[c] + nad[c] -> h[c] + nadh[c] + 13bpg[c]

We can add a gene rule to the reaction using the changeGeneAssociation function:

model = changeGeneAssociation(model, 'GAPDH', 'G1 and G2');

New gene G1 added to model
New gene G2 added to model

printRxnFormula(model, 'rxnAbbrList', {'GAPDH'}, 'gprFlag', true);

GAPDH pi[c] + g3p[c] + nad[c] -> h[c] + nadh[c] + 13bpg[c] G1 and G2

Alternatively, one can add a gene rule to a reaction using the addReaction function, and within this function

applying the geneRule input option.

model = addReaction(model, 'PGK', 'geneRule', 'G2 or G3', 'printLevel', 0);

New gene G3 added to model

printRxnFormula(model, 'gprFlag', true);

GAPDH pi[c] + g3p[c] + nad[c] -> h[c] + nadh[c] + 13bpg[c] G1 and G2
GLCt1r glc_D[e] <=> glc_D[c]
HEX1 glc_D[c] + atp[c] -> h[c] + adp[c] + g6p[c]
PGI g6p[c] <=> f6p[c]
PFK atp[c] + f6p[c] -> h[c] + adp[c] + fdp[c]
FBP fdp[c] + h2o[c] -> f6p[c] + pi[c]
FBA fdp[c] <=> g3p[c] + dhap[c]
TPI dhap[c] <=> g3p[c]
PGK adp[c] + 13bpg[c] -> atp[c] + 3pg[c] G2 or G3
PGM 3pg[c] <=> 2pg[c]
EX_glc_D[e] glc_D[e] <=> 2 Ratio_EX_glc_D[c]_EX_glc_D[e]
EX_glc_D[c] glc_D[c] + Ratio_EX_glc_D[c]_EX_glc_D[e] <=>
sink_13bpg[c] 13bpg[c] <=>
sink_nad[c] nad[c] <=>
DM_dhap[c] dhap[c] ->
DM_g3p[c] g3p[c] ->

Remove reactions and metabolites
To delete reactions from the model, use the removeRxns function:

 model = removeRxns(model, {'EX_glc_D[c]', 'EX_glc_D[e]', 'sink_13bpg[c]', ...
 'sink_nad[c]', 'DM_dhap[c]', 'DM_g3p[c]'});

 assert(rxns_length + 3 == length(model.rxns));

• The reaction length was updated since a number of reactions were removed from the model.

To remove metabolites from the model, use the removeMetabolites() function:

 model = removeMetabolites(model, {'3pg[c]', '2pg[c]'}, false);
 printRxnFormula(model, 'rxnAbbrList', {'GAPDH'}, 'gprFlag', true);

11

GAPDH pi[c] + g3p[c] + nad[c] -> h[c] + nadh[c] + 13bpg[c] G1 and G2

• The 'GAPDH' reaction is still present in the model since there are other metabolites in the reaction, not just

the metabolites we tried to delete. The 'false' input option of the removeMetabolites function indictes

that only empty reactions should be removed.

To delete metabolites and reactions with zero rows and columns, the removeTrivialStoichiometry()

function can be used:

 model = removeTrivialStoichiometry(model)

model =
 rxns: {9×1 cell}
 S: [15×9 double]
 lb: [9×1 double]
 ub: [9×1 double]
 c: [9×1 double]
 mets: {15×1 cell}
 b: [15×1 double]
 rules: {9×1 cell}
 genes: {3×1 cell}
 osense: -1
 csense: [15×1 char]
 rxnGeneMat: [9×3 double]
 rxnNames: {9×1 cell}
 subSystems: {9×1 cell}
 metNames: {15×1 cell}
 grRules: {9×1 cell}
 note: 'EX_glc_D[c] andEX_glc_D[e]are set to have a ratio of1:2.'

Search for duplicate reactions and comparison of two models
Since genome-scale metabolic models are expanding every day [2], the need to compare models is also

growing. The elementary functions in The Cobra Toolbox can support simultaneous structural analysis and

comparison.

Checking for reaction duplicates with the checkDuplicateRxn() function (i.e. by reaction abbreviation), using

either the method:

• 'S' (does not detect reverse reactions), or

• 'FR' (neglects reactions direction).

For demonstration of the S method, first check for dupicates and then add the duplicate reaction to the model:

[model, removedRxn, rxnRelationship] = checkDuplicateRxn(model, 'S', 1, 1);

Checking for reaction duplicates by stoichiometry ...
 no duplicates found.

printRxnFormula(model, 'rxnAbbrList', {'GLCt1r'});

GLCt1r glc_D[e] <=> glc_D[c]

model = addReaction(model, 'GLCt1r_duplicate_reverse',...
 'metaboliteList', {'glc_D[e]', 'glc_D[c]'},...

12

 'stoichCoeffList', [1 -1], 'lowerBound', 0, ...
 'upperBound', 20, 'checkDuplicate', 0);

GLCt1r_duplicate_reverse glc_D[c] -> glc_D[e]

Detecting duplicates using the S method:

method = 'S';
[model,removedRxn, rxnRelationship] = checkDuplicateRxn(model, method, 1, 1);

Checking for reaction duplicates by stoichiometry ...
 no duplicates found.

• The GLCt1r_duplicate_reverse reaction is not detected as a duplicate reaction therefore will not be

removed as the S method does not detect a reverse reactions.

• Reevaluate the reaction length to show this:

assert(rxns_length + 3 == length(model.rxns));

Detecting duplicates using the FR method:

method = 'FR';
[model, removedRxn, rxnRelationship] = checkDuplicateRxn(model, method, 1, 1)

Checking for reaction duplicates by stoichiometry (up to orientation) ...
 Keep: GLCt1r glc_D[e] <=> glc_D[c]
Duplicate: GLCt1r_duplicate_reverse glc_D[c] -> glc_D[e]
model =
 rxns: {9×1 cell}
 S: [15×9 double]
 lb: [9×1 double]
 ub: [9×1 double]
 c: [9×1 double]
 mets: {15×1 cell}
 b: [15×1 double]
 rules: {9×1 cell}
 genes: {3×1 cell}
 osense: -1
 csense: [15×1 char]
 rxnGeneMat: [9×3 double]
 rxnNames: {9×1 cell}
 subSystems: {9×1 cell}
 metNames: {15×1 cell}
 grRules: {9×1 cell}
 note: 'EX_glc_D[c] andEX_glc_D[e]are set to have a ratio of1:2.'
removedRxn = 10
rxnRelationship = 2

assert(rxns_length + 2 == length(model.rxns))

• The GLCt1r_duplicate_reverse reaction is detected as a duplicate reaction therefore will not be removed

as the FR method does detect a reverse reactions.

Checking for non-unique reactions and metabolites in a model using the checkCobraModelUnique()

function:

model = checkCobraModelUnique(model, false)

13

model =
 rxns: {9×1 cell}
 S: [15×9 double]
 lb: [9×1 double]
 ub: [9×1 double]
 c: [9×1 double]
 mets: {15×1 cell}
 b: [15×1 double]
 rules: {9×1 cell}
 genes: {3×1 cell}
 osense: -1
 csense: [15×1 char]
 rxnGeneMat: [9×3 double]
 rxnNames: {9×1 cell}
 subSystems: {9×1 cell}
 metNames: {15×1 cell}
 grRules: {9×1 cell}
 note: 'EX_glc_D[c] andEX_glc_D[e]are set to have a ratio of1:2.'

• Input option 'false' means the function will not renames non-unique reaction names and metabolites

Changing the model's objective
Simulating specific objectives of a model is often necessary in order to perform an investigation of different

conditions. One of the fundamental objectives is optimal growth [3]. The model can be modified to get different

conditions by changing the model objective.

One reaction is set as the objective, and has an objective coefficient of 0.5:

modelNew = changeObjective(model, 'GLCt1r', 0.5);

Multiple reactions are set collectively as the objective, and the default objective coefficient of 1 for each reaction:

modelNew = changeObjective(model, {'PGI'; 'PFK'; 'FBP'});

The direction of reactions
Sometimes it may be important to have all reactions in a model as irreversible reactions (i.e. only allow a

forward reaction / positive flux in reactions). This can be important if, for example, the absolute flux values

are of interest, and negative flux would reduce an objective while it should actually increase it. The COBRA

Toolbox offers functionality to change all reactions in a model to an irreversible format. IT does this by splitting

all reversible reactions and adjusting the respective lower and upper bounds, such that the model capacities

stay the same.

Let us see, how the glycolysis model currently looks:

printRxnFormula(model);

GAPDH pi[c] + g3p[c] + nad[c] -> h[c] + nadh[c] + 13bpg[c]
GLCt1r glc_D[e] <=> glc_D[c]
HEX1 glc_D[c] + atp[c] -> h[c] + adp[c] + g6p[c]
PGI g6p[c] <=> f6p[c]
PFK atp[c] + f6p[c] -> h[c] + adp[c] + fdp[c]
FBP fdp[c] + h2o[c] -> f6p[c] + pi[c]
FBA fdp[c] <=> g3p[c] + dhap[c]

14

TPI dhap[c] <=> g3p[c]
PGK adp[c] + 13bpg[c] -> atp[c]

To convert a model to an irreversible model use the convertToIrreversible command:

[modelIrrev, matchRev, rev2irrev, irrev2rev] = convertToIrreversible(model);

Compare the irreversible model with the original model:

printRxnFormula(modelIrrev);

GAPDH pi[c] + g3p[c] + nad[c] -> h[c] + nadh[c] + 13bpg[c]
GLCt1r_f glc_D[e] -> glc_D[c]
HEX1 glc_D[c] + atp[c] -> h[c] + adp[c] + g6p[c]
PGI_f g6p[c] -> f6p[c]
PFK atp[c] + f6p[c] -> h[c] + adp[c] + fdp[c]
FBP fdp[c] + h2o[c] -> f6p[c] + pi[c]
FBA_f fdp[c] -> g3p[c] + dhap[c]
TPI_f dhap[c] -> g3p[c]
PGK adp[c] + 13bpg[c] -> atp[c]
GLCt1r_b glc_D[c] -> glc_D[e]
PGI_b f6p[c] -> g6p[c]
FBA_b g3p[c] + dhap[c] -> fdp[c]
TPI_b g3p[c] -> dhap[c]

• You will notice, that there are more reactions in this model and that all reactions which have a lower

bound < 0 are split in two.

There is also a function to convert an irreversible model to a reversible model:

modelRev = convertToReversible(modelIrrev);

If we now compare the reactions of this model with those from the original model, they should look the same.

printRxnFormula(modelRev);

GAPDH pi[c] + g3p[c] + nad[c] -> h[c] + nadh[c] + 13bpg[c]
GLCt1r glc_D[e] <=> glc_D[c]
HEX1 glc_D[c] + atp[c] -> h[c] + adp[c] + g6p[c]
PGI g6p[c] <=> f6p[c]
PFK atp[c] + f6p[c] -> h[c] + adp[c] + fdp[c]
FBP fdp[c] + h2o[c] -> f6p[c] + pi[c]
FBA fdp[c] <=> g3p[c] + dhap[c]
TPI dhap[c] <=> g3p[c]
PGK adp[c] + 13bpg[c] -> atp[c]

Create gene-reaction-associations (GPRs) from scratch.
Assign the GPR '(G1) or (G2)' to the reaction HEX1

model = changeGeneAssociation(model, 'HEX1', '(G1) or (G2)');

Replace an existing GPRs with a new one.
Here, we will search for all instances of a specific GPR ('G1 and G2 ') and replace it with a new one ('G1 or G4').

15

Define the old and the new GPRs.

GPRsReplace = {'G1 and G2' 'G1 or G4'};
for i = 1 : size(GPRsReplace, 1)
 oldGPRrxns = find(strcmp(model.grRules, GPRsReplace{i, 1}));%Find all reactions that have the old GPR
 for j = 1:length(oldGPRrxns)
 model = changeGeneAssociation(model, model.rxns{oldGPRrxns(j)}, GPRsReplace{i, 2});
 end
end

New gene G4 added to model

Remove unused genes
Let us assume that the reaction PGK has to be removed from the model

model = removeRxns(model, 'PGK');

The model now contains genes that do not participate in any GPR

find(sum(model.rxnGeneMat, 1) == 0)

ans = 3

We remove unused genes by re-assigning the model's GPR rules, which updates the reaction-gene-matrix and

gene list.

Store GPR list in a new variable

storeGPR = model.grRules;

Erase model's gene list and reaction-gene-matrix

model.rxnGeneMat = [];
model.genes = [];

Re-assign GPR rules to model

for i = 1 : length(model.rxns)
 model = changeGeneAssociation(model, model.rxns{i}, storeGPR{i});
end

New gene G1 added to model
New gene G4 added to model
New gene G2 added to model

Check that there are no unused genes left in the model

find(sum(model.rxnGeneMat, 1) == 0)

ans =

 1×0 empty double row vector

16

Remove issues with GPR definitions and spaces in reaction abbreviations
Remove issues with quotation marks in the GPR definitions.

model.grRules = strrep(model.grRules, '''', '');

Remove spaces from reaction abbreviations.

model.rxns = strrep(model.rxns, ' ', '');

Remove unneccessary brackets from the GPR associations.

for i = 1 : length(model.grRules)
 if isempty(strfind(model.grRules{i}, 'and')) && isempty(strfind(model.grRules{i}, 'or'))% no AND or OR in GPR
 model.grRules{i} = regexprep(model.grRules{i}, '[\(\)]', '');
 end
end

Extract subnetwork
Extract a subnetwork from the model consisting of the reactions HEX1, PGI, FBP, and FBA. The function will

remove unused metabolites.

rxnList = {'HEX1'; 'PGI'; 'FBP'; 'FBA'}

rxnList =
 'HEX1'
 'PGI'
 'FBP'
 'FBA'

subModel = extractSubNetwork(model, rxnList)

subModel =
 rxns: {4×1 cell}
 S: [11×4 double]
 lb: [4×1 double]
 ub: [4×1 double]
 c: [4×1 double]
 mets: {11×1 cell}
 b: [11×1 double]
 rules: {4×1 cell}
 genes: {3×1 cell}
 osense: -1
 csense: [11×1 char]
 rxnGeneMat: [4×3 double]
 rxnNames: {4×1 cell}
 subSystems: {4×1 cell}
 metNames: {11×1 cell}
 grRules: {4×1 cell}
 note: 'EX_glc_D[c] andEX_glc_D[e]are set to have a ratio of1:2.'

REFERENCES
[1] Orth, J. D., Thiele I., and Palsson, B. Ø. What is flux balance analysis? Nat. Biotechnol., 28(3), 245-248

(2010).

17

[2] Feist, A. M., Palsson, B. Ø. The growing scope of applications of genome-scale metabolic reconstructions:

the case of E. coli. Nature Biotechnology, 26(6), 659-667 (2008).

[3] Feist, A. M., Palsson, B. Ø. The Biomass Objective Function. Current Opinion in Microbiology, 13(3), 344-349

(2010).

18

