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INTRODUCTION
In this tutorial, we will do a manipulation with a simple model of the first few reactions of the glycolysis metabolic 

pathway as created in the "Model Creation" tutorial.

Glycolysis is the metabolic pathway that occurs in most organisms in the cytosol of the cell. First, we will use the 

beginning of that pathway to create a simple constraint-based metabolic network (Figure 1).

Figure 1: A small metabolic network consisting of the seven reactions in the glycolysis pathway. 

At the beginning of the reconstruction, the initial step is to assess the integrity of the draft reconstruction. 

Furthermore, an evaluation of accuracy is needed: check necessity of each reaction and metabolite,  the 

accuracy of the stoichiometry, and direction and reversibility of the reactions.

The metabolites structures and reactions are from the Virtual Metabolic Human database (VMH, http://vmh.life).

After creating or loading the model and to simulate different model conditions, the model can be modified, such 

as:

• Creating, adding and handling reactions;

• Adding exchange, sink and demand reactions;

• Altering reaction bounds;

• Altering reactions;

• Removing reactions and metabolites;

• Searching for duplicates and comparison of two models;

• Changing the model objective;

• Changing the direction of reaction(s);

• Creating gene-reaction-associations ('GPRs');

• Extracting a subnetwork
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EQUIPMENT SETUP
Start CobraToolbox

initCobraToolbox(false) % false, as we don't want to update;

      _____   _____   _____   _____     _____     |
     /  ___| /  _  \ |  _  \ |  _  \   / ___ \    |   COnstraint-Based Reconstruction and Analysis
     | |     | | | | | |_| | | |_| |  | |___| |   |   The COBRA Toolbox - 2017
     | |     | | | | |  _  { |  _  /  |  ___  |   |
     | |___  | |_| | | |_| | | | \ \  | |   | |   |   Documentation:
     \_____| \_____/ |_____/ |_|  \_\ |_|   |_|   |   http://opencobra.github.io/cobratoolbox
                                                  | 

 > Checking if git is installed ...  Done.
 > Checking if the repository is tracked using git ...  Done.
 > Checking if curl is installed ...  Done.
 > Checking if remote can be reached ...  Done.
 > Initializing and updating submodules ... Done.
 > Adding all the files of The COBRA Toolbox ...  Done.
 > Define CB map output... set to svg.
 > Retrieving models ...   Done.
 > TranslateSBML is installed and working properly.
 > Configuring solver environment variables ...
   - [*---] ILOG_CPLEX_PATH: /opt/ibm/ILOG/CPLEX_Studio1271/cplex/matlab/x86-64_linux
   - [*---] GUROBI_PATH: /opt/gurobi702/linux64/matlab
   - [----] TOMLAB_PATH :  --> set this path manually after installing the solver ( see instructions )
   - [----] MOSEK_PATH :  --> set this path manually after installing the solver ( see instructions )
   Done.
 > Checking available solvers and solver interfaces ... Done.
 > Setting default solvers ... Done.
 > Saving the MATLAB path ... Done.
   - The MATLAB path was saved as ~/pathdef.m.

 > Summary of available solvers and solver interfaces

            Support        LP      MILP        QP      MIQP       NLP
    ----------------------------------------------------------------------
    cplex_direct     full                  0         0         0         0         -
    dqqMinos         full                  1         -         -         -         -
    glpk             full                  1         1         -         -         -
    gurobi           full                  1         1         1         1         -
    ibm_cplex        full                  1         1         1         -         -
    matlab           full                  1         -         -         -         1
    mosek            full                  0         0         0         -         -
    pdco             full                  1         -         1         -         -
    quadMinos        full                  1         -         -         -         1
    tomlab_cplex     full                  0         0         0         0         -
    qpng             experimental          -         -         1         -         -
    tomlab_snopt     experimental          -         -         -         -         0
    gurobi_mex       legacy                0         0         0         0         -
    lindo_old        legacy                0         -         -         -         -
    lindo_legacy     legacy                0         -         -         -         -
    lp_solve         legacy                1         -         -         -         -
    opti             legacy                0         0         0         0         0
    ----------------------------------------------------------------------
    Total            -                     8         3         4         1         2

 + Legend: - = not applicable, 0 = solver not compatible or not installed, 1 = solver installed.

 > You can solve LP problems using: 'dqqMinos' - 'glpk' - 'gurobi' - 'ibm_cplex' - 'matlab' - 'pdco' - 'quadMinos' - 'lp_solve' 
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 > You can solve MILP problems using: 'glpk' - 'gurobi' - 'ibm_cplex' 
 > You can solve QP problems using: 'gurobi' - 'ibm_cplex' - 'pdco' - 'qpng' 
 > You can solve MIQP problems using: 'gurobi' 
 > You can solve NLP problems using: 'matlab' - 'quadMinos' 

 > Checking for available updates ...
 > The COBRA Toolbox is up-to-date.

PROCEDURE

Generate a network
A constraint-based metabolic model contains the stoichiometric matrix (S) with reactions and metabolites [1].

S is a stoichiometric representation of metabolic networks corresponding to the reactions in the biochemical 

pathway. In each column of the S is a biochemical reaction (n) and in each row is a precise metabolite (m). 

There is a stoichiometric coefficient of zero, which means that metabolite does not participate in that distinct 

reaction. The coefficient also can be positive when the appropriate metabolite is produced, or negative for every 

metabolite consumed [1].

Generate a model using the createModel() function:

ReactionFormulas = {'glc_D[e]  -> glc_D[c]',...
    'glc_D[c] + atp[c]  -> h[c] + adp[c] + g6p[c]',...
    'g6p[c]  <=> f6p[c]',...
    'atp[c] + f6p[c]  -> h[c] + adp[c] + fdp[c]',...
    'fdp[c] + h2o[c]  -> f6p[c] + pi[c]',...
    'fdp[c]  -> g3p[c] + dhap[c]',...
    'dhap[c]  -> g3p[c]'};
ReactionNames = {'GLCt1r', 'HEX1', 'PGI', 'PFK', 'FBP', 'FBA', 'TPI'};
lowerbounds = [-20, 0, -20, 0, 0, -20, -20];
upperbounds = [20, 20, 20, 20, 20, 20, 20];
model = createModel(ReactionNames, ReactionNames, ReactionFormulas,...
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                   'lowerBoundList', lowerbounds, 'upperBoundList', upperbounds);

GLCt1r    glc_D[e]     <=>    glc_D[c] 
HEX1    glc_D[c] + atp[c]     ->    h[c] + adp[c] + g6p[c] 
PGI    g6p[c]     <=>    f6p[c] 
PFK    atp[c] + f6p[c]     ->    h[c] + adp[c] + fdp[c] 
FBP    fdp[c] + h2o[c]     ->    f6p[c] + pi[c] 
FBA    fdp[c]     <=>    g3p[c] + dhap[c] 
TPI    dhap[c]     <=>    g3p[c] 

We can now have a look at the different model fields created. The stoichiometry is stored in the S field of the 

model, which was described above. Since this is commonly a sparse matrix (i.e. it contains a lot of zeros), it may 

be useful for your understanding to display the full representation:

full(model.S)

ans = 
    -1     0     0     0     0     0     0
     1    -1     0     0     0     0     0
     0    -1     0    -1     0     0     0
     0     1     0     1     0     0     0
     0     1     0     1     0     0     0
     0     1    -1     0     0     0     0
     0     0     1    -1     1     0     0
     0     0     0     1    -1    -1     0
     0     0     0     0    -1     0     0
     0     0     0     0     1     0     0

It is required for a model to consist of the descriptive fields: model.mets and model.rxns, which represent 

the metabolites and the reactions respectively. 

model.mets

ans = 
    'glc_D[e]'
    'glc_D[c]'
    'atp[c]'
    'h[c]'
    'adp[c]'
    'g6p[c]'
    'f6p[c]'
    'fdp[c]'
    'h2o[c]'
    'pi[c]'
    'g3p[c]'
    'dhap[c]'

model.rxns

ans = 
    'GLCt1r'
    'HEX1'
    'PGI'
    'PFK'
    'FBP'
    'FBA'
    'TPI'
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The fields in a COBRA model are commonly column vectors, which is important to note when writing functions 

manipulating these fields.

There are a few more fields present in each COBRA model:

model.lb, indicating the lower bounds of each reaction, and model.ub indicating the upper bound of a 

reaction.  

% this displays an array with reaction names and flux bounds.
[{'Reaction ID', 'Lower Bound', 'Upper Bound'};...   
 model.rxns, num2cell(model.lb), num2cell(model.ub)]

ans = 
    'Reaction ID'    'Lower Bound'    'Upper Bound'
    'GLCt1r'         [        -20]    [         20]
    'HEX1'           [          0]    [         20]
    'PGI'            [        -20]    [         20]
    'PFK'            [          0]    [         20]
    'FBP'            [          0]    [         20]
    'FBA'            [        -20]    [         20]
    'TPI'            [        -20]    [         20]

% This is a convenience function which does pretty much the same as the line above.
printFluxBounds(model);

Reaction ID       Lower Bound       Upper Bound
     GLCt1r           -20.000            20.000
       HEX1             0.000            20.000
        PGI           -20.000            20.000
        PFK             0.000            20.000
        FBP             0.000            20.000
        FBA           -20.000            20.000
        TPI           -20.000            20.000

Before we start to modify the model, it might be useful to store in the workspace some of the current properties 

of the model:

mets_length = length(model.mets)

mets_length = 12

rxns_length = length(model.rxns)

rxns_length = 7

Creating, adding and handling reactions
If we want to add a reaction to the model or modify an existing reaction use the function addReaction. 

We will add to the model some more reactions from glycolysis. There are two different approaches to adding 

reactions to a model:

1. The formula approach

2. The list appraoch
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The formula approach

model = addReaction(model, 'GAPDH',...
       'reactionFormula', 'g3p[c] + nad[c] + 2 pi[c] -> nadh[c] + h[c] + 13bpg[c]');

GAPDH    2 pi[c] + g3p[c] + nad[c]     ->    h[c] + nadh[c] + 13bpg[c] 

model = addReaction(model, 'PGK',...
       'reactionFormula', '13bpg[c] + adp[c] -> atp[c] + 3pg[c]');

PGK    adp[c] + 13bpg[c]     ->    atp[c] + 3pg[c] 

model = addReaction(model, 'PGM', 'reactionFormula', '3pg[c] <=> 2pg[c]' );

PGM    3pg[c]     <=>    2pg[c] 

Display the stoichiometric matrix after adding reactions (note the enlarge link when you move your mouse over 

the output to display the full matrix):

full(model.S) 

ans = 
    -1     0     0     0     0     0     0     0     0     0
     1    -1     0     0     0     0     0     0     0     0
     0    -1     0    -1     0     0     0     0     1     0
     0     1     0     1     0     0     0     1     0     0
     0     1     0     1     0     0     0     0    -1     0
     0     1    -1     0     0     0     0     0     0     0
     0     0     1    -1     1     0     0     0     0     0
     0     0     0     1    -1    -1     0     0     0     0
     0     0     0     0    -1     0     0     0     0     0
     0     0     0     0     1     0     0    -2     0     0

• one extra column is added (for added reaction) and 5 new rows (for nadh, nad, 13bpg, 2pg and 3pg 

metabolites)

If you want to search for the indecies of reactions in the model, and change the order of the select reactions, 

use the following functions:

rxnID = findRxnIDs(model, model.rxns)

rxnID = 
     1
     2
     3
     4
     5
     6
     7
     8
     9
    10

model.rxns
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ans = 
    'GLCt1r'
    'HEX1'
    'PGI'
    'PFK'
    'FBP'
    'FBA'
    'TPI'
    'GAPDH'
    'PGK'
    'PGM'

model = moveRxn(model, 8, 1);
model.rxns

ans = 
    'GAPDH'
    'GLCt1r'
    'HEX1'
    'PGI'
    'PFK'
    'FBP'
    'FBA'
    'TPI'
    'PGK'
    'PGM'

While the function moveRxn does not modify the network structure it can be useful in keeping a model tidy.

The list approach

model = addReaction(model, 'GAPDH2',...
    'metaboliteList', {'g3p[c]', 'nad[c]', 'pi[c]', '13bpg[c]', 'nadh[c]', 'h[c]' },...
    'stoichCoeffList', [-1; -1; -2; 1; 1; 1], 'reversible', false);

• The addReaction function has the ability to recognize duplicate reactions. No reaction added here 

since the reaction is recognised to already exist in the model. 

Since the fourth reaction we attempted to add to the model was a duplicate, the number of the reactions in the 

model should only of increased by three and the number of metabolites in the model should of only increaed by 

five (13bpg, nad, nadh, 23bpg and 2pg).

assert(length(model.rxns) == rxns_length + 3)
assert(length(model.mets) == mets_length + 5) 

Adding exchange, sink and demand reactions
The are three specific types of reactions in a COBRA model that use and recycle accumulated metabolites, or 

produce the required metabolites:

1. Exchange reactions - are reactions that move metabolites across in silico compartments. These in silico 

compartments are representive of intra- and inter- cellular membranes.
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2. Sink reactions - The metabolites, produced in reactions that are outside of an ambit of the system or in 

unknown reactions, are supplied to the network with reversible sink reactions.

3. Demand reactions - Irreversible reactions added to the model to consume metabolites that are deposited 

in the system.

There are two ways to implement these type of reactions:

1. Use the addReaction function, detailing the stoichiometric coefficient:

model = addReaction(model, 'EX_glc_D[e]', 'metaboliteList', {'glc_D[e]'} ,...
                    'stoichCoeffList', [-1]);

EX_glc_D[e]    glc_D[e]     <=>    

To find exchange reactions in the model use the findExcRxns function:

% determines whether a reaction is a general exchange reaction and
% whether its an uptake.
[selExc, selUpt] = findExcRxns(model, 0, 1)

selExc = 
   0
   0
   0
   0
   0
   0
   0
   0
   0
   0
   1
selUpt = 
   0
   0
   0
   0
   0
   0
   0
   0
   0
   0
   0

2.  Use a utility function to create the specific type of reaction: addExchangeRxn, addSinkReactions, 

addDemandReaction.

model = addExchangeRxn(model, {'glc_D[e]', 'glc_D[c]'})

EX_glc_D[e]    glc_D[e]     <=>    
EX_glc_D[c]    glc_D[c]     <=>    
model = 
          rxns: {12×1 cell}
             S: [17×12 double]
            lb: [12×1 double]
            ub: [12×1 double]
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             c: [12×1 double]
          mets: {17×1 cell}
             b: [17×1 double]
         rules: {12×1 cell}
         genes: {0×1 cell}
        osense: -1
        csense: [17×1 char]
    rxnGeneMat: [12×0 double]
      rxnNames: {12×1 cell}
    subSystems: {12×1 cell}
      metNames: {17×1 cell}
       grRules: {12×1 cell}

model = addSinkReactions(model, {'13bpg[c]', 'nad[c]'})

sink_13bpg[c]    13bpg[c]     <=>    
sink_nad[c]    nad[c]     <=>    
model = 
          rxns: {14×1 cell}
             S: [17×14 double]
            lb: [14×1 double]
            ub: [14×1 double]
             c: [14×1 double]
          mets: {17×1 cell}
             b: [17×1 double]
         rules: {14×1 cell}
         genes: {0×1 cell}
        osense: -1
        csense: [17×1 char]
    rxnGeneMat: [14×0 double]
      rxnNames: {14×1 cell}
    subSystems: {14×1 cell}
      metNames: {17×1 cell}
       grRules: {14×1 cell}

 model = addDemandReaction(model, {'dhap[c]', 'g3p[c]'})

DM_dhap[c]    dhap[c]     ->    
DM_g3p[c]    g3p[c]     ->    
model = 
          rxns: {16×1 cell}
             S: [17×16 double]
            lb: [16×1 double]
            ub: [16×1 double]
             c: [16×1 double]
          mets: {17×1 cell}
             b: [17×1 double]
         rules: {16×1 cell}
         genes: {0×1 cell}
        osense: -1
        csense: [17×1 char]
    rxnGeneMat: [16×0 double]
      rxnNames: {16×1 cell}
    subSystems: {16×1 cell}
      metNames: {17×1 cell}
       grRules: {16×1 cell}
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Setting a ratio between the reactions
It is important to emphasise that previous knowledge base information should be taken into account when 

generating a model. If this information is omited, the analysis of a model could be adversely altered and 

consequent results not representative of the network. 

For instance, if it is known that the flux of one reaction is X times the flux of another reaction, it is recommended 

to 'couple' (i.e., set a ratio) the reactions in the model. 

E.g. 

model = addRatioReaction (model, {'EX_glc_D[c]', 'EX_glc_D[e]'}, [1; 2])

model = 
          rxns: {16×1 cell}
             S: [18×16 double]
            lb: [16×1 double]
            ub: [16×1 double]
             c: [16×1 double]
          mets: {18×1 cell}
             b: [18×1 double]
         rules: {16×1 cell}
         genes: {0×1 cell}
        osense: -1
        csense: [18×1 char]
    rxnGeneMat: [16×0 double]
      rxnNames: {16×1 cell}
    subSystems: {16×1 cell}
      metNames: {18×1 cell}
       grRules: {16×1 cell}
          note: 'EX_glc_D[c] andEX_glc_D[e]are set to have a ratio of1:2.'

Constraining the flux boundaries of a reaction
In order to respect the transport and exchange potential of a particular metabolite, or to resemble the different 

conditions in the model, we frequently need to set appropriate limits of the reactions.

model = changeRxnBounds(model, 'EX_glc_D[e]', -18.5, 'l');

Modifying reactions
The addReaction function is also a good choice to modify reactions. By supplying to the function a new 

stoichiometry, the old will be overwritten. 

For example, further up, we added the wrong stoichiometry for the GAP-Dehydrogenase with a coefficient of 2 

for phosphate. Print the reaction to visulize:

printRxnFormula(model, 'rxnAbbrList', 'GAPDH');

GAPDH    2 pi[c] + g3p[c] + nad[c]     ->    h[c] + nadh[c] + 13bpg[c] 

Correct the reaction using addReaction: with the corrected stoichiometry:

model = addReaction(model, 'GAPDH',...
    'metaboliteList', {'g3p[c]', 'nad[c]', 'pi[c]', '13bpg[c]', 'nadh[c]','h[c]' },...
    'stoichCoeffList', [-1; -1; -1; 1; 1; 1]);
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GAPDH    pi[c] + g3p[c] + nad[c]     ->    h[c] + nadh[c] + 13bpg[c] 

We can add a gene rule to the reaction using the changeGeneAssociation function: 

model = changeGeneAssociation(model, 'GAPDH', 'G1 and G2');

New gene G1 added to model
New gene G2 added to model

printRxnFormula(model, 'rxnAbbrList', {'GAPDH'}, 'gprFlag', true);

GAPDH    pi[c] + g3p[c] + nad[c]     ->    h[c] + nadh[c] + 13bpg[c]     G1 and G2

Alternatively, one can add a gene rule to a reaction using the addReaction function, and within this function 

applying the geneRule input option. 

model = addReaction(model, 'PGK', 'geneRule', 'G2 or G3', 'printLevel', 0);

New gene G3 added to model

printRxnFormula(model, 'gprFlag', true);

GAPDH    pi[c] + g3p[c] + nad[c]     ->    h[c] + nadh[c] + 13bpg[c]     G1 and G2
GLCt1r    glc_D[e]     <=>    glc_D[c]     
HEX1    glc_D[c] + atp[c]     ->    h[c] + adp[c] + g6p[c]     
PGI    g6p[c]     <=>    f6p[c]     
PFK    atp[c] + f6p[c]     ->    h[c] + adp[c] + fdp[c]     
FBP    fdp[c] + h2o[c]     ->    f6p[c] + pi[c]     
FBA    fdp[c]     <=>    g3p[c] + dhap[c]     
TPI    dhap[c]     <=>    g3p[c]     
PGK    adp[c] + 13bpg[c]     ->    atp[c] + 3pg[c]     G2 or G3
PGM    3pg[c]     <=>    2pg[c]     
EX_glc_D[e]    glc_D[e]     <=>    2 Ratio_EX_glc_D[c]_EX_glc_D[e]     
EX_glc_D[c]    glc_D[c] + Ratio_EX_glc_D[c]_EX_glc_D[e]     <=>        
sink_13bpg[c]    13bpg[c]     <=>        
sink_nad[c]    nad[c]     <=>        
DM_dhap[c]    dhap[c]     ->        
DM_g3p[c]    g3p[c]     ->        

Remove reactions and metabolites
To delete reactions from the model, use the removeRxns function:

 model = removeRxns(model, {'EX_glc_D[c]', 'EX_glc_D[e]', 'sink_13bpg[c]', ...
                             'sink_nad[c]', 'DM_dhap[c]', 'DM_g3p[c]'});

 assert(rxns_length + 3 == length(model.rxns));

• The reaction length was updated since a number of reactions were removed from the model. 

To remove metabolites from the model, use the removeMetabolites() function:

  model = removeMetabolites(model, {'3pg[c]', '2pg[c]'}, false);
  printRxnFormula(model, 'rxnAbbrList', {'GAPDH'}, 'gprFlag', true);
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GAPDH    pi[c] + g3p[c] + nad[c]     ->    h[c] + nadh[c] + 13bpg[c]     G1 and G2

• The 'GAPDH' reaction is still present in the model since there are other metabolites in the reaction, not just 

the metabolites we tried to delete. The 'false' input option of the removeMetabolites function indictes 

that only empty reactions should be removed.

To delete metabolites and reactions with zero rows and columns, the removeTrivialStoichiometry() 

function can be used:

  model = removeTrivialStoichiometry(model)

model = 
          rxns: {9×1 cell}
             S: [15×9 double]
            lb: [9×1 double]
            ub: [9×1 double]
             c: [9×1 double]
          mets: {15×1 cell}
             b: [15×1 double]
         rules: {9×1 cell}
         genes: {3×1 cell}
        osense: -1
        csense: [15×1 char]
    rxnGeneMat: [9×3 double]
      rxnNames: {9×1 cell}
    subSystems: {9×1 cell}
      metNames: {15×1 cell}
       grRules: {9×1 cell}
          note: 'EX_glc_D[c] andEX_glc_D[e]are set to have a ratio of1:2.'

Search for duplicate reactions and comparison of two models
Since genome-scale metabolic models are expanding every day [2], the need to compare models is also 

growing. The elementary functions in The Cobra Toolbox can support simultaneous structural analysis and 

comparison.

Checking for reaction duplicates with the checkDuplicateRxn() function (i.e. by reaction abbreviation), using 

either the method: 

• 'S' (does not detect reverse reactions), or 

• 'FR' (neglects reactions direction).

For demonstration of the S method, first check for dupicates and then add the duplicate reaction to the model:

[model, removedRxn, rxnRelationship] = checkDuplicateRxn(model, 'S', 1, 1);

Checking for reaction duplicates by stoichiometry ...
 no duplicates found.

printRxnFormula(model, 'rxnAbbrList', {'GLCt1r'});

GLCt1r    glc_D[e]     <=>    glc_D[c] 

model = addReaction(model, 'GLCt1r_duplicate_reverse',...
                    'metaboliteList', {'glc_D[e]', 'glc_D[c]'},...

12



                    'stoichCoeffList', [1 -1], 'lowerBound', 0, ...
                    'upperBound', 20, 'checkDuplicate', 0);

GLCt1r_duplicate_reverse    glc_D[c]     ->    glc_D[e] 

Detecting duplicates using the S method:

method = 'S'; 
[model,removedRxn, rxnRelationship] = checkDuplicateRxn(model, method, 1, 1);

Checking for reaction duplicates by stoichiometry ...
 no duplicates found.

• The GLCt1r_duplicate_reverse reaction is not detected as a duplicate reaction therefore will not be 

removed as the S method does not detect a reverse reactions.

• Reevaluate the reaction length to show this:

assert(rxns_length + 3 == length(model.rxns));

Detecting duplicates using the FR method:

method = 'FR';
[model, removedRxn, rxnRelationship] = checkDuplicateRxn(model, method, 1, 1)

Checking for reaction duplicates by stoichiometry (up to orientation) ...
     Keep:     GLCt1r    glc_D[e]     <=>    glc_D[c] 
Duplicate:     GLCt1r_duplicate_reverse    glc_D[c]     ->    glc_D[e] 
model = 
          rxns: {9×1 cell}
             S: [15×9 double]
            lb: [9×1 double]
            ub: [9×1 double]
             c: [9×1 double]
          mets: {15×1 cell}
             b: [15×1 double]
         rules: {9×1 cell}
         genes: {3×1 cell}
        osense: -1
        csense: [15×1 char]
    rxnGeneMat: [9×3 double]
      rxnNames: {9×1 cell}
    subSystems: {9×1 cell}
      metNames: {15×1 cell}
       grRules: {9×1 cell}
          note: 'EX_glc_D[c] andEX_glc_D[e]are set to have a ratio of1:2.'
removedRxn = 10
rxnRelationship = 2

assert(rxns_length + 2 == length(model.rxns))

• The GLCt1r_duplicate_reverse reaction is detected as a duplicate reaction therefore will not be removed 

as the FR method does detect a reverse reactions.

Checking for non-unique reactions and metabolites in a model using the checkCobraModelUnique() 

function: 

model = checkCobraModelUnique(model, false)
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model = 
          rxns: {9×1 cell}
             S: [15×9 double]
            lb: [9×1 double]
            ub: [9×1 double]
             c: [9×1 double]
          mets: {15×1 cell}
             b: [15×1 double]
         rules: {9×1 cell}
         genes: {3×1 cell}
        osense: -1
        csense: [15×1 char]
    rxnGeneMat: [9×3 double]
      rxnNames: {9×1 cell}
    subSystems: {9×1 cell}
      metNames: {15×1 cell}
       grRules: {9×1 cell}
          note: 'EX_glc_D[c] andEX_glc_D[e]are set to have a ratio of1:2.'

• Input option 'false' means the function will not renames non-unique reaction names and metabolites

Changing the model's objective
Simulating specific objectives of a model is often necessary in order to perform an investigation of different 

conditions. One of the fundamental objectives is optimal growth [3]. The model can be modified to get different 

conditions by changing the model objective.

One reaction is set as the objective, and has an objective coefficient of 0.5:

modelNew = changeObjective(model, 'GLCt1r', 0.5);

Multiple reactions are set collectively as the objective, and the default objective coefficient of 1 for each reaction:

modelNew = changeObjective(model, {'PGI'; 'PFK'; 'FBP'});

The direction of reactions 
Sometimes it may be important to have all reactions in a model as irreversible reactions (i.e. only allow a 

forward reaction / positive flux in reactions). This can be important if, for example, the absolute flux values 

are of interest, and negative flux would reduce an objective while it should actually increase it. The COBRA 

Toolbox offers functionality to change all reactions in a model to an irreversible format. IT does this by splitting 

all reversible reactions and adjusting the respective lower and upper bounds, such that the model capacities 

stay the same. 

Let us see, how the glycolysis model currently looks:

printRxnFormula(model);

GAPDH    pi[c] + g3p[c] + nad[c]     ->    h[c] + nadh[c] + 13bpg[c] 
GLCt1r    glc_D[e]     <=>    glc_D[c] 
HEX1    glc_D[c] + atp[c]     ->    h[c] + adp[c] + g6p[c] 
PGI    g6p[c]     <=>    f6p[c] 
PFK    atp[c] + f6p[c]     ->    h[c] + adp[c] + fdp[c] 
FBP    fdp[c] + h2o[c]     ->    f6p[c] + pi[c] 
FBA    fdp[c]     <=>    g3p[c] + dhap[c] 
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TPI    dhap[c]     <=>    g3p[c] 
PGK    adp[c] + 13bpg[c]     ->    atp[c] 

To convert a model to an irreversible model use the convertToIrreversible command:

[modelIrrev, matchRev, rev2irrev, irrev2rev] = convertToIrreversible(model);

Compare the irreversible model with the original model:

printRxnFormula(modelIrrev);

GAPDH    pi[c] + g3p[c] + nad[c]     ->    h[c] + nadh[c] + 13bpg[c] 
GLCt1r_f    glc_D[e]     ->    glc_D[c] 
HEX1    glc_D[c] + atp[c]     ->    h[c] + adp[c] + g6p[c] 
PGI_f    g6p[c]     ->    f6p[c] 
PFK    atp[c] + f6p[c]     ->    h[c] + adp[c] + fdp[c] 
FBP    fdp[c] + h2o[c]     ->    f6p[c] + pi[c] 
FBA_f    fdp[c]     ->    g3p[c] + dhap[c] 
TPI_f    dhap[c]     ->    g3p[c] 
PGK    adp[c] + 13bpg[c]     ->    atp[c] 
GLCt1r_b    glc_D[c]     ->    glc_D[e] 
PGI_b    f6p[c]     ->    g6p[c] 
FBA_b    g3p[c] + dhap[c]     ->    fdp[c] 
TPI_b    g3p[c]     ->    dhap[c] 

• You will notice, that there are more reactions in this model and that all reactions which have a lower 

bound < 0 are split in two. 

There is also a function to convert an irreversible model to a reversible model:

modelRev = convertToReversible(modelIrrev);

If we now compare the reactions of this model with those from the original model, they should look the same.

printRxnFormula(modelRev);

GAPDH    pi[c] + g3p[c] + nad[c]     ->    h[c] + nadh[c] + 13bpg[c] 
GLCt1r    glc_D[e]     <=>    glc_D[c] 
HEX1    glc_D[c] + atp[c]     ->    h[c] + adp[c] + g6p[c] 
PGI    g6p[c]     <=>    f6p[c] 
PFK    atp[c] + f6p[c]     ->    h[c] + adp[c] + fdp[c] 
FBP    fdp[c] + h2o[c]     ->    f6p[c] + pi[c] 
FBA    fdp[c]     <=>    g3p[c] + dhap[c] 
TPI    dhap[c]     <=>    g3p[c] 
PGK    adp[c] + 13bpg[c]     ->    atp[c] 

Create gene-reaction-associations (GPRs) from scratch.
Assign the GPR '(G1) or (G2)' to the reaction HEX1

model = changeGeneAssociation(model, 'HEX1', '(G1) or (G2)');

Replace an existing GPRs with a new one. 
Here, we will search for all instances of a specific GPR ('G1 and G2 ') and replace it with a new one ('G1 or G4').
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Define the old and the new GPRs. 

GPRsReplace = {'G1 and G2'    'G1 or G4'};
for  i = 1 : size(GPRsReplace, 1)
    oldGPRrxns = find(strcmp(model.grRules, GPRsReplace{i, 1}));%Find all reactions that have the old GPR
    for j = 1:length(oldGPRrxns)
        model = changeGeneAssociation(model, model.rxns{oldGPRrxns(j)}, GPRsReplace{i, 2});
    end
end

New gene G4 added to model

Remove unused genes
Let us assume that the reaction PGK has to be removed from the model

model = removeRxns(model, 'PGK');

The model now contains genes that do not participate in any GPR

find(sum(model.rxnGeneMat, 1) == 0)

ans = 3

We remove unused genes by re-assigning the model's GPR rules, which updates the reaction-gene-matrix and 

gene list.

Store GPR list in a new variable

storeGPR = model.grRules;

Erase model's gene list and reaction-gene-matrix

model.rxnGeneMat = [];
model.genes = [];

Re-assign GPR rules to model

for i = 1 : length(model.rxns)
    model = changeGeneAssociation(model, model.rxns{i}, storeGPR{i});
end

New gene G1 added to model
New gene G4 added to model
New gene G2 added to model

Check that there are no unused genes left in the model

find(sum(model.rxnGeneMat, 1) == 0)

ans =

  1×0 empty double row vector
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Remove issues with GPR definitions and spaces in reaction abbreviations
Remove issues with quotation marks in the GPR definitions.

model.grRules = strrep(model.grRules, '''', '');

Remove spaces from reaction abbreviations.

model.rxns = strrep(model.rxns, ' ', '');

Remove unneccessary brackets from the GPR associations. 

for i = 1 : length(model.grRules)
    if isempty(strfind(model.grRules{i}, 'and')) && isempty(strfind(model.grRules{i}, 'or'))% no AND or OR in GPR
        model.grRules{i} = regexprep(model.grRules{i}, '[\(\)]', '');
    end
end

Extract subnetwork
Extract a subnetwork from the model consisting of the reactions HEX1, PGI, FBP, and FBA. The function will 

remove unused metabolites.

rxnList = {'HEX1'; 'PGI'; 'FBP'; 'FBA'}

rxnList = 
    'HEX1'
    'PGI'
    'FBP'
    'FBA'

subModel = extractSubNetwork(model, rxnList)

subModel = 
          rxns: {4×1 cell}
             S: [11×4 double]
            lb: [4×1 double]
            ub: [4×1 double]
             c: [4×1 double]
          mets: {11×1 cell}
             b: [11×1 double]
         rules: {4×1 cell}
         genes: {3×1 cell}
        osense: -1
        csense: [11×1 char]
    rxnGeneMat: [4×3 double]
      rxnNames: {4×1 cell}
    subSystems: {4×1 cell}
      metNames: {11×1 cell}
       grRules: {4×1 cell}
          note: 'EX_glc_D[c] andEX_glc_D[e]are set to have a ratio of1:2.'
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