Metabotools tutorial I

Authors: Maike K. Aurich, Sylvain Arreckx, Systems Biochemistry Group, LCSB, University of Luxembourg.

Reviewer(s): Anne Richelle, Lewis Lab at University of California, San Diego.

INTRODUCTION
In this tutorial, we generate contextualized models of two lymphoblastic leukemia cell lines, CCRF-CEM and Molt- 4 cells. They will be generated by integrating semi-quantitative metabolomic data, transcriptomic data, and growth rates. We will afterwards analyze the solution space of these models by using a sampling analysis.
Before running a section in the tutorial, read the corresponding sections in the MetaboTools protocol and supplemental tutorial (Data sheet 2, http://journal.frontiersin.org/article/10.3389/fphys.2016.00327/full).
PROCEDURE
Clear workspace and initialize the COBRA Toolbox
clear
initCobraToolbox(false) % false, as we don't want to update

Step 0 - Define the output location and set the LP solver

Define the output path and set the solver for LP problem
global CBTDIR % set path to cobratoolbox (pathToCOBRA)
outputPath = pwd;% ouputPath = 'ADD YOUR PATH TO YOUR OUTPUT FOLDER'
solver = 'glpk'; % solver = 'ADD YOUR SOLVER'; %, e.g., 'cplex_direct' for ILOG
solverOK = changeCobraSolver(solver, 'LP');
Check the solver setup
if solverOK == 1
fprintf('Solver %s is set.\n', solver);
else
error('Solver %s could not be used. Check if %s is in the matlab path (set path) or check for typos', solver, solver);
end
Load and check that the input model is correclty loaded
tutorialPath = fileparts(which('tutorial_metabotoolsI.mlx'));
if isequal(exist([tutorialPath filesep 'starting_model.mat'], 'file'), 2)
starting_model = readCbModel([tutorialPath filesep 'starting_model.mat']);
fprintf('The model is loaded.\n');
else
error('The model ''starting_model'' could not be loaded.');
end
Check output path and writing permission
if ~exist(outputPath, 'dir') == 7
error('Output directory in ''outputPath'' does not exist. Verify that you type it correctly or create the directory.');
end
% Make and save a dummy file to test the writing to output directory
A = rand(1);
try
save([outputPath filesep 'A']);
catch ME
error('Files cannot be saved to the provided location: %s\nObtain rights to write into %s directory or set ''outputPath'' to a different directory.', outputPath, outputPath);
end

Step 1: Shaping the model's environment using setMediumConstraints

Constrain the model using the data related to RPMI medium composition. To this end, define the set of exchange reactions for which exometabolomic data are available
medium_composition = {'EX_ala_L(e)';'EX_arg_L(e)';'EX_asn_L(e)';'EX_asp_L(e)';'EX_cys_L(e)';'EX_gln_L(e)';...
'EX_glu_L(e)';'EX_gly(e)';'EX_his_L(e)';'EX_ile_L(e)';'EX_leu_L(e)';'EX_lys_L(e)';'EX_met_L(e)';...
'EX_phe_L(e)';'EX_4HPRO(e)';'EX_pro_L(e)';'EX_ser_L(e)';'EX_thr_L(e)';'EX_trp_L(e)';'EX_tyr_L(e)';...
'EX_val_L(e)';'EX_ascb_L(e)';'EX_btn(e)';'EX_chol(e)';'EX_pnto_R(e)';'EX_fol(e)';'EX_ncam(e)';...
'EX_pydxn(e)';'EX_ribflv(e)';'EX_thm(e)';'EX_inost(e)';'EX_ca2(e)';'EX_fe3(e)';'EX_k(e)';'EX_hco3(e)';...
'EX_na1(e)';'EX_pi(e)';'EX_glc(e)';'EX_hxan(e)';'EX_lnlc(e)';'EX_lipoate(e)';'EX_pyr(e)';'EX_thymd(e)';...
'EX_gthrd(e)';'EX_anth(e)'};
% Medium concentrations
met_Conc_mM = [0.1;1.15;0.15;0.379;0.208;2;0.136;0.133;0.0968;0.382;0.382;0.274;0.101;0.0909;0.153;0.174;...
0.286;0.168;0.0245;0.129;0.171;0.00863;0.00082;0.0214;0.000524;0.00227;0.082;0.00485;0.000532;0.00297;...
0.194;0.424;0;5.33;23.81;127.26;5.63;11.11;0;0;0;1;0;0.00326;0.0073];
Define constraints on basic medium components (i.e., metabolites that are uptake from the medium but not captured by the measured data)
mediumCompounds = {'EX_co2(e)';'EX_h(e)';'EX_h2o(e)';'EX_hco3(e)';'EX_nh4(e)';'EX_o2(e)';'EX_pi(e)';'EX_so4(e)'};
mediumCompounds_lb = -100;
Define also additional constraints to limit the model behaviour (e.g., secretion of oxygen, essential amino acids that need to be taken up)
customizedConstraints = {'EX_o2(e)';'EX_strch1(e)';'EX_acetone(e)';'EX_glc(e)';'EX_his_L(e)';'EX_val_L(e)';'EX_met_L(e)'};
customizedConstraints_lb = [-2.3460;0;0;-500;-100;-100;-100];
customizedConstraints_ub = [500;0;0;500;500;500;500];
Apply the medium constraints previously defined using setMediumConstraints. Note that this function also require the definition of the cell concentration (cellConc), the cell weight (cellWeight), the time (t), the current value and the new value for infinite constraints (respectively current_inf and set_inf).
cellConc = 2.17 * 1e6;
cellWeight = 3.645e-12;
t = 48;
current_inf = 1000;
set_inf = 500;
[modelMedium, ~] = setMediumConstraints(starting_model, set_inf, current_inf, medium_composition, met_Conc_mM, cellConc, ...
t, cellWeight, mediumCompounds, mediumCompounds_lb, customizedConstraints, customizedConstraints_ub, customizedConstraints_lb);

Step 2: calculate the limit of detection (LODs) for each metabolites

Use the function calculateLODs to converts detection limits of unit ng/mL to mM using the theoretical mass (g/mol)
ex_RXNS = {'EX_5mta(e)';'EX_uri(e)';'EX_chol(e)';'EX_ncam(e)';'EX_3mop(e)';'EX_succ(e)';'EX_pnto_R(e)';...
'EX_5oxpro(e)';'EX_thm(e)';'EX_anth(e)';'EX_4HPRO(e)';'EX_lac_L(e)';'EX_3mob(e)';'EX_his_L(e)';...
'EX_trp_L(e)';'EX_orn(e)';'EX_arg_L(e)';'EX_thr_L(e)';'EX_fol(e)';'EX_gln_L(e)';'EX_4pyrdx(e)';...
'EX_ser_L(e)';'EX_glc(e)';'EX_ribflv(e)';'EX_glu_L(e)';'EX_tyr_L(e)';'EX_phe_L(e)';'EX_inost(e)';...
'EX_Lcystin(e)';'EX_leu_L(e)';'EX_met_L(e)';'EX_cys_L(e)';'EX_asn_L(e)';'EX_mal_L(e)';'EX_ile_L(e)';...
'EX_pyr(e)';'EX_lys_L(e)';'EX_ala_L(e)';'EX_cit(e)';'EX_pro_L(e)';'EX_gly(e)';'EX_asp_L(e)';'EX_34hpp';...
'EX_octa(e)';'EX_4mop(e)';'EX_glyb(e)';'EX_val_L(e)';'EX_ade(e)';'EX_hxan(e)';'EX_gua(e)';'EX_ins(e)';...
'EX_orot(e)';'EX_ura(e)';'EX_ahcys(e)';'EX_cbasp(e)';'EX_Lcystin(e)';'EX_ser_L(e)';'EX_cys_L(e)';...
'EX_thm(e)';'EX_arg_L(e)';'EX_ncam(e)'};
theo_mass = [298.0974;243.0617;104.1075;123.0558;129.0552;117.0188;220.1185;128.0348;265.1123;138.0555;...
132.0661;89.0239;115.0395;156.0773;205.0977;133.0977;175.1195;120.0661;440.1319;147.077;182.0453;...
106.0504;179.0556;377.1461;148.061;182.0817;166.0868;179.0556;241.0317;132.1025;150.0589;122.0276;...
133.0613;133.0137;132.1025;87.0082;147.1134;90.0555;191.0192;116.0712;74.0242;134.0453;180.157;...
172.265;130.142;118.0868;118.0868;136.0623;137.0463;152.0572;267.0729;155.0093;111.0195;385.1294;...
175.0355;241.0317;106.0504;122.0276;265.1123;175.1195;123.0558];
lod_ngmL = [0.3;1.7;2.8;3;3.5;3.9;4;4.8;6.1;7.7;8.1;10.9;11.2;13.6;15.7;16.9;24.8;25.6;25.7;28.4;32.7;...
37.5;44;45;45;47.4;48.4;59;59.7;68.9;74.1;77;82.1;99.2;112.9;121.3;131.7;133.5;150.8;169.2;214.3;...
229.5;537.3;10.9;3.5;2.8;28.2;1.6;0.8;48.9;8.8;37.1;52.4;50;229.5;59.7;37.5;77;6.1;24.8;3];
[lod_mM] = calculateLODs(theo_mass, lod_ngmL);

Step 3: define the uptake and secretion profiles

Exclude metabolites with uncertain experimental data from the list of metabolites for which uptake and secretion profiles need to be computed
exclude_upt = {'EX_gln_L(e)'; 'EX_cys_L(e)'; 'EX_ala_L(e)'; 'EX_mal_L(e)'; 'EX_fol(e)'};
exclude_secr = {'EX_gln_L(e)'; 'EX_cys_L(e)'; 'EX_ala_L(e)'};
Define metabolites with missing experimental points but for which uptake and secretion profiles need to be computed
add_secr = {'EX_mal_L(e)'};
add_upt = {};
The essential amino acids should be excluded from the secretion profile
essAA_excl = {'EX_his_L(e)'; 'EX_ile_L(e)'; 'EX_leu_L(e)'; 'EX_lys_L(e)'; 'EX_met_L(e)';...
'EX_phe_L(e)'; 'EX_thr_L(e)'; 'EX_trp_L(e)'; 'EX_val_L(e)'};
Define the list of metabolites for which experimental data are available
data_RXNS = {'EX_orn(e)';'EX_mal_L(e)';'EX_lac_L(e)';'EX_gly(e)';'EX_glu_L(e)';'EX_cit(e)';...
'EX_5oxpro(e)';'EX_4mop(e)';'EX_3mop(e)';'EX_3mob(e)';'EX_tyr_L(e)';'EX_trp_L(e)';...
'EX_thr_L(e)';'EX_pyr(e)';'EX_phe_L(e)';'EX_lys_L(e)';'EX_leu_L(e)';'EX_ile_L(e)';...
'EX_glc(e)';'EX_chol(e)';'EX_anth(e)';'EX_val_L(e)';'EX_met_L(e)';'EX_his_L(e)';...
'EX_gln_L(e)';'EX_cys_L(e)';'EX_ala_L(e)';'EX_pi(e)';'EX_asp_L(e)';'EX_4HPRO(e)';...
'EX_pnto_R(e)';'EX_pro_L(e)';'EX_fol(e)'};
Define the data associated with Molt-4 cell cultures
input_A = [
% control TP 1 control TP 2 Cond TP 1 Cond TP 2
65245.09667 68680.93 54272.41667 65159.50333
3000 30970.784 20292.406 27226.6555
2038946.433 1917042.967 5654513.467 101768253
163882.9467 186682.92 121762.3567 310547.7
473539.8667 455197.4667 462903.8333 1024508.5
8681.527333 8704.7345 9459.837 34177.945
29168.15 21808.73 120655.9867 2060525.467
3000 3000 34436.50433 113668.5123
3000 3000 25108.829 121927.3673
3000 3000 3000 14717.55667
4142302 4063607.667 3934639.333 3075783.333
2153692 2132723.667 2037735.333 1387754.333
406102.2667 417512.6333 381085.2333 259555.2667
465074.6 387569.1333 439148.0667 210407.8333
8087955 8345511.333 8215168.333 5360276
198435.8 195675.8 188473.1 112386.1667
20823770.33 20801258.67 19725086.67 15148808
21229254.67 21225778.33 20799761 17160163
76555640.67 71459886.33 61697085.33 34981419.33
876300.4333 905132.5 892182.2 541860.4667
159124.46 178538.2167 162567.13 3000
2857012.667 2900419.667 2853523.667 1793173.667
2995910.333 3018536.333 3024630.333 2266832.333
69077.16333 67843.12 69406.69 95624.28
3000 3000 824549.3667 2283200.867
45304.84667 52977.77333 56566.27667 60759.23
1613345.1 1258710.1 3430342.067 25970024.1
216828142.3 221118425 223518663 216863897.3
632160.0333 612562.3 590881.7333 940705.6
814465.8333 786011.5667 630513.4 622493.9
84638.70667 86751.96 89717.10667 68882.68333
5107317.333 5168599.333 5163708.333 5263614.333
95419.73667 105904.7067 97550.78667 102678.49
];
Define the data associated with CCRF-CEM cell cultures
input_B = [
% control 2 TP 1 control 2 TP 2 Cond 2 TP 1 Cond 2 TP 2
65245.09667 68680.93 73850.77 98489.89
3000 30970.784 3000 94181.77233
2038946.433 1917042.967 5222377.933 134980059.9
163882.9467 186682.92 219683.7 460476.5267
473539.8667 455197.4667 437398.3667 630407.2667
8681.527333 8704.7345 8317.144 86546.77933
29168.15 21808.73 62146.47333 1012932.38
3000 3000 9918.992 129433.4973
3000 3000 7222.259333 145547.7347
3000 3000 3000 17641.55667
4142302 4063607.667 4023284.333 3489981.333
2153692 2132723.667 2068977 1570648
406102.2667 417512.6333 386495.2 303808.2
465074.6 387569.1333 376779.1 249036.3333
8087955 8345511.333 8237784.667 6540301.667
198435.8 195675.8 196447.1 149861.6667
20823770.33 20801258.67 21119935.67 16346765.67
21229254.67 21225778.33 20790535.33 17219085
76555640.67 71459886.33 65009057.67 24330565.33
876300.4333 905132.5 884112.5667 259273.9333
159124.46 178538.2167 158271.14 60631.19333
2857012.667 2900419.667 2668140 2790196.333
2995910.333 3018536.333 2890029.333 2538211
69077.16333 67843.12 74035.24 86165.55
3000 3000 323185.6667 2063962.067
45304.84667 52977.77333 62076.23333 64524.22333
1613345.1 1258710.1 2788313.567 30868376.53
216828142.3 221118425 212276379 208623151.3
632160.0333 612562.3 680373.4333 770903.9333
814465.8333 786011.5667 679862.7 582257.4667
84638.70667 86751.96 88002.12 99449.36667
5107317.333 5168599.333 5134219 4445918.333
95419.73667 105904.7067 100629.24 84807.62333
];
Use the function defineUptakeSecretionProfiles to calculate the uptake and secretion rate over the time of the culture for both condition (e.g. CCRF-CEM and Molt- 4 cells)
tol = 0.05;
[cond1_uptake, cond2_uptake, cond1_secretion, cond2_secretion, slope_Ratio] = defineUptakeSecretionProfiles...
(input_A, input_B, data_RXNS, tol, essAA_excl, exclude_upt, exclude_secr, add_secr, add_upt);

Step 4: Calculate the difference between the uptake and secretion profiles from the two conditions

Use calculateQuantitativeDiffs to calculate the sets of exchange reactions with higher uptake and secretion in condition 1 than in condition 2.
Also adapt the condition uptake and secretion for the second condition. this is sometimes necessary to allow the model to achieve a feasible flux.
cond2_secretion = [cond2_secretion; 'EX_4pyrdx(e)';'EX_34hpp';'EX_uri(e)';'EX_succ(e)';'EX_glyb(e)';'EX_5mta(e)';'EX_asn_L(e)'];
cond2_secretion(ismember(cond2_secretion, {'EX_asp_L(e)';'EX_pnto_R(e)'})) = [];
cond2_uptake = [cond2_uptake; 'EX_fol(e)'];
cond2_uptake(ismember(cond2_uptake, {'EX_met_L(e)'})) = [];
[cond1_upt_higher, cond2_upt_higher, cond2_secr_higher, cond1_secr_higher, cond1_uptake_LODs,...
cond2_uptake_LODs, cond1_secretion_LODs, cond2_secretion_LODs] = calculateQuantitativeDiffs(data_RXNS,...
slope_Ratio, ex_RXNS, lod_mM, cond1_uptake, cond2_uptake, cond1_secretion, cond2_secretion);
NOTE: Sometimes, you will need to remove some metabolites from the uptake and secretion profiles, e.g. those for which you assume a different directionality as in the data or if the metabolites is not detected at a specific sampling time. Indeed, the inclusion of these extreme point could distort the results. Example of consumption slope ratio associated to EX_anth(e) is 1975% higher in Molt-4 compared to CCRF-CEM cells. Therefore, these metabolites need to be removed from the input for semi-quantitative adjustment unless such large differences are justified and make sense biologically.
remove = {'EX_anth(e)'; 'EX_ile_L(e)'};
A = [];
for i = 1:length(cond2_upt_higher)
if find(ismember(remove, cond2_upt_higher{i, 1})) > 0
A = [A; i];
end
end
cond2_upt_higher(A, :) = [];

Step 5: Enforce uptake and secretion rate using qualitative constraints

Use the function setQualitativeConstraints to enforce minimal uptake or secretion based on individual detection limits (e.g., based on the uptake and secretion profile of metabolites measured through mass-spectrometry). If these values are not available, a very small value (e.g., 1.0E-06) can be used. Note that this value has to be below the concentrations defined in the medium, otherwise the model will be infeasible.
Definition of the qualitative constraints for Molt-4 cells
ambiguous_metabolites = {'EX_ala_L(e)'; 'EX_gln_L(e)'; 'EX_cys_L(e)'};
basisMedium = {'EX_o2(e)'; 'EX_strch1(e)'; 'EX_acetone(e)'; 'EX_glc(e)'; 'EX_his_L(e)'; 'EX_ca2(e)'; 'EX_cl(e)'; 'EX_co(e)';...
'EX_fe2(e)'; 'EX_fe3(e)'; 'EX_k(e)'; 'EX_na1(e)'; 'EX_i(e)'; 'EX_sel(e)'; 'EX_co2(e)'; 'EX_h(e)'; 'EX_h2o(e)'; 'EX_hco3(e)';...
'EX_nh4(e)'; 'EX_o2(e)'; 'EX_pi(e)'; 'EX_so4(e)'};
[model_A] = setQualitativeConstraints(modelMedium, cond1_uptake, cond1_uptake_LODs, cond1_secretion, cond1_secretion_LODs, ...
cellConc, t, cellWeight, ambiguous_metabolites, basisMedium);
Definition of the qualitative constraints for CCRF-CEM cells
ambiguous_metabolites = {'EX_ala_L(e)'; 'EX_gln_L(e)'; 'EX_pydxn(e)'; 'EX_cys_L(e)'};
basisMedium = {'EX_ca2(e)'; 'EX_cl(e)'; 'EX_co(e)'; 'EX_fe2(e)'; 'EX_fe3(e)'; 'EX_k(e)'; 'EX_na1(e)'; 'EX_i(e)'; 'EX_sel(e)';...
'EX_co2(e)'; 'EX_h(e)'; 'EX_h2o(e)'; 'EX_hco3(e)'; 'EX_nh4(e)'; 'EX_o2(e)'; 'EX_pi(e)'; 'EX_so4(e)'; 'EX_his_L(e)';...
'EX_o2(e)'; 'EX_strch1(e)'; 'EX_acetone(e)'; 'EX_glc(e)'; 'EX_val_L(e)'; 'EX_met_L(e)'};
[model_B] = setQualitativeConstraints(modelMedium, cond2_uptake, cond2_uptake_LODs, cond2_secretion, cond2_secretion_LODs, ...
cellConc, t, cellWeight, ambiguous_metabolites, basisMedium);

Step 6: Define semi quantitative constraints

Use the relative difference of signal intensities previously calculated for the two conditions (calculateQuantitativeDiffs) to define semi-quantitative constraints (setSemiQuantConstraints).
[modelA_QUANT, modelB_QUANT] = setSemiQuantConstraints(model_A, model_B, cond1_upt_higher, cond2_upt_higher, cond2_secr_higher, cond1_secr_higher);

Step 7: Define growth constraints

Using the data related to the doubling time for each cell, constrain the growth reaction using setConstraintsOnBiomassReaction
GrowthRxn = 'biomass_reaction2';
tolerance = 20;
doublingTimeA = 19.6; %MOLT4 cells
[model_A_BM] = setConstraintsOnBiomassReaction(modelA_QUANT, GrowthRxn, doublingTimeA, tolerance);
doublingTimeB = 22; %CCRF-CEM
[model_B_BM] = setConstraintsOnBiomassReaction(modelB_QUANT, GrowthRxn, doublingTimeB, tolerance);

Step 8: Delete absent genes

Constrain to zero the set of absent genes, defined in DataGenes
dataGenes = [535;1548;2591;3037;4248;4709;6522;7167;7367;8399;23545;129807;221823]; % set of genes absent in MOLT4 cells
[model_A_GE] = integrateGeneExpressionData(model_A_BM, dataGenes);
dataGenes = [239;443;535;1548;2683;3037;4248;4709;5232;6522;7364;7367;8399;23545;54363;66002;129807;221823];% set of genes absent in CCRF-CEM cells
[model_B_GE] = integrateGeneExpressionData(model_B_BM, dataGenes);

Step 9: Extract a condition specific FVA

Use extractConditionSpecificModel to prune the model based on a user-defined flux value threshold. This function a flux variability analyis to extract a subnetwork for which all reactions carry fluxes higher or equal to the defined threshold value
theshold = 1e-6;
model = model_A_GE;
[model_Molt] = extractConditionSpecificModel(model, theshold);% MOLT4 condition specific model
[model_CEM] = extractConditionSpecificModel(model_B_GE, theshold);% CCRF-CEM condition specific model
ANTICIPATED RESULTS
Compare the differents model generated previously by analysing the metabolite connectivity of the networks
[MetConn, RxnLength] = networkTopology(modelMedium); % model constrained by medium composition data
[MetConnA, RxnLengthA] = networkTopology(model_Molt); % MOLT4 condition specific model
[MetConnB, RxnLengthB] = networkTopology(model_CEM); % CCRF-CEM condition specific model
MetConnCompare = sort(MetConn, 'descend');
MetConnCompareA = sort(MetConnA, 'descend');
MetConnCompareB = sort(MetConnB, 'descend');
Plot metabolite connectivity
figure
semilogy(sort(MetConnCompare, 'descend'), 'ro')
hold
semilogy(sort(MetConnCompareA, 'descend'), 'bo')
semilogy(sort(MetConnCompareB, 'descend'), 'go')
title('Metabolite connectivity')
The models can also be compared by performing a sampling analysis using performSampling
fprintf('Perform sampling analysis\n');
warmupn = 2000;
nFiles = 10;
pointsPerFile = 1000;
stepsPerPoint = 500;
fileBaseNo = 0;
maxTime = 3600000;
fileName = 'modelA';% MOLT4 condition specific model
performSampling(model_Molt, warmupn, fileName, nFiles, pointsPerFile, stepsPerPoint, fileBaseNo, maxTime, outputPath);
fileName = 'modelB';% CCRF-CEM condition specific model
performSampling(model_CEM, warmupn, fileName, nFiles, pointsPerFile, stepsPerPoint, fileBaseNo, maxTime, outputPath);
Use the function summarizeSamplingResults to return the median of the flux values from the two sampled models. The analysis can be limited to a specific set of reaction defined in show_rxns. Moreover, reactions associated with genes of special interest ( e.g. differentially expressed genes) can be defined in dataGenes to facilitate the analysis
fonts = 8;
nFiles = 10;
pointsPerFile = 1000;
starting_Model = modelMedium;
hist_per_page = 4;
bin = 30;
modelA = model_Molt;
modelB = model_CEM;
dataGenes = [32;205;411;412;1537;1608;1632;1645;1737;1757;2108;2184;2224;2539];
show_rxns = {'PYK';'SUCD1m';'ATPS4m';'ETF'};
[stats, statsR] = summarizeSamplingResults(modelA, modelB, outputPath, nFiles, pointsPerFile, starting_Model, dataGenes, show_rxns, fonts, hist_per_page, bin, 'modelA', 'modelB');