Sparse Flux Balance Analysis

Author: Ronan Fleming, Hoai Minh Le, Systems Biochemistry Group, University of Luxembourg.

Reviewer: Stefania Magnusdottir, Molecular Systems Physiology Group, University of Luxembourg.

INTRODUCTION

We consider a biochemical network of m molecular species and n biochemical reactions. The biochemical network is mathematically represented by a stoichiometric matrix . In standard notation, flux balance analysis (FBA) is the linear optimisation problem
where is a parameter vector that linearly combines one or more reaction fluxes to form what is termed the objective function, and where a , or , represents some fixed output, or input, of the ith molecular species. A typical application of flux balance analysis is to predict an optimal non-equilibrium steady-state flux vector that optimises a linear objective function, such biomass production rate, subject to bounds on certain reaction rates. Herein we use sparse flux balance analysis to predict a minimal number of active reactions, consistent with an optimal objective derived from the result of a standard flux balance analysis problem. In this context sparse flux balance analysis requires a solution to the following problem
where the last constraint represents the requirement to satisfy an optimal objective value derived from any solution to a flux balance analysis (FBA) problem.

EQUIPMENT SETUP

Initialize the COBRA Toolbox.

If necessary, initialize The Cobra Toolbox using the initCobraToolbox function.
initCobraToolbox(false) % false, as we don't want to update
_____ _____ _____ _____ _____ | / ___| / _ \ | _ \ | _ \ / ___ \ | COnstraint-Based Reconstruction and Analysis | | | | | | | |_| | | |_| | | |___| | | The COBRA Toolbox - 2017 | | | | | | | _ { | _ / | ___ | | | |___ | |_| | | |_| | | | \ \ | | | | | Documentation: \_____| \_____/ |_____/ |_| \_\ |_| |_| | http://opencobra.github.io/cobratoolbox | > Checking if git is installed ... Done. > Checking if the repository is tracked using git ... Done. > Checking if curl is installed ... Done. > Checking if remote can be reached ... Done. > Initializing and updating submodules ... Done. > Adding all the files of The COBRA Toolbox ... Done. > Define CB map output... set to svg. > Retrieving models ... Done. > TranslateSBML is installed and working properly. > Configuring solver environment variables ... - [---*] ILOG_CPLEX_PATH: C:\Program Files\IBM\ILOG\CPLEX_Studio1271\cplex\matlab\x64_win64 - [----] GUROBI_PATH : --> set this path manually after installing the solver ( see instructions ) - [---*] TOMLAB_PATH: C:\Program Files\tomlab\ - [----] MOSEK_PATH : --> set this path manually after installing the solver ( see instructions ) Done. > Checking available solvers and solver interfaces ... Done. > Setting default solvers ... Done. > Saving the MATLAB path ... Done. - The MATLAB path was saved in the default location. > Summary of available solvers and solver interfaces Support LP MILP QP MIQP NLP ---------------------------------------------------------------------- cplex_direct full 0 0 0 0 - dqqMinos full 0 - - - - glpk full 1 1 - - - gurobi full 1 1 1 1 - ibm_cplex full 1 1 1 - - matlab full 1 - - - 1 mosek full 0 0 0 - - pdco full 1 - 1 - - quadMinos full 0 - - - 0 tomlab_cplex full 1 1 1 1 - qpng experimental - - 1 - - tomlab_snopt experimental - - - - 1 gurobi_mex legacy 0 0 0 0 - lindo_old legacy 0 - - - - lindo_legacy legacy 0 - - - - lp_solve legacy 1 - - - - opti legacy 0 0 0 0 0 ---------------------------------------------------------------------- Total - 7 4 5 2 2 + Legend: - = not applicable, 0 = solver not compatible or not installed, 1 = solver installed. > You can solve LP problems using: 'glpk' - 'gurobi' - 'ibm_cplex' - 'matlab' - 'pdco' - 'tomlab_cplex' - 'lp_solve' > You can solve MILP problems using: 'glpk' - 'gurobi' - 'ibm_cplex' - 'tomlab_cplex' > You can solve QP problems using: 'gurobi' - 'ibm_cplex' - 'pdco' - 'tomlab_cplex' - 'qpng' > You can solve MIQP problems using: 'gurobi' - 'tomlab_cplex' > You can solve NLP problems using: 'matlab' - 'tomlab_snopt' > Checking for available updates ... --> You cannot update your fork using updateCobraToolbox(). [3d2698 @ Tutorial-sparseFBA]. Please use the MATLAB.devTools (https://github.com/opencobra/MATLAB.devTools).

COBRA model.

In this tutorial, the model used is the generic reconstruction of human metabolism, the Recon 2.04, which is provided in the COBRA Toolbox. The Recon 2.04 model can also be downloaded from the Virtual Metabolic Human webpage. You can also select your own model to work with. Before proceeding with the simulations, the path for the model needs to be set up:
global CBTDIR
modelFileName = 'Recon2.v04.mat';
modelDirectory = getDistributedModelFolder(modelFileName); %Look up the folder for the distributed Models.
modelFileName= [modelDirectory filesep modelFileName]; % Get the full path. Necessary to be sure, that the right model is loaded
model = readCbModel(modelFileName);
NOTE: The following text, code, and results are shown for the Recon 2.04 model

PROCEDURE

Set the tolerance to distinguish between zero and non-zero flux, based on the numerical tolerance of the currently installed optimisation solver.
feasTol = getCobraSolverParams('LP', 'feasTol');
Display the constraints
minInf = -1000;
maxInf = 1000;
printConstraints(model, minInf, maxInf);
MinConstraints: DM_T_antigen_g_ -1 EX_10fthf(e) -1 EX_10fthf5glu(e) -1 EX_10fthf6glu(e) -1 EX_10fthf7glu(e) -1 EX_11_cis_retfa(e) -1 EX_13_cis_retnglc(e) -1 EX_1glyc_hs(e) -1 EX_1mncam(e) -1 EX_2425dhvitd2(e) -1 EX_2425dhvitd3(e) -1 EX_24nph(e) -1 EX_25hvitd2(e) -1 EX_25hvitd3(e) -1 EX_2hb(e) -1 EX_2mcit(e) -1 EX_34dhoxpeg(e) -1 EX_34dhphe(e) -1 EX_35cgmp(e) -1 EX_3aib(e) -1 EX_3aib_D(e) -1 EX_3mlda(e) -1 EX_4abut(e) -1 EX_4hdebrisoquine(e) -1 EX_4hphac(e) -1 EX_4mptnl(e) -1 EX_4mtolbutamide(e) -1 EX_4nph(e) -1 EX_4nphsf(e) -1 EX_4pyrdx(e) -1 EX_5adtststerone(e) -1 EX_5adtststeroneglc(e) -1 EX_5adtststerones(e) -1 EX_5dhf(e) -1 EX_5fthf(e) -1 EX_5homeprazole(e) -1 EX_5htrp(e) -1 EX_5thf(e) -1 EX_6dhf(e) -1 EX_6htststerone(e) -1 EX_6thf(e) -1 EX_7dhf(e) -1 EX_7thf(e) -1 EX_9_cis_retfa(e) -1 EX_abt(e) -1 EX_ac(e) -1 EX_acac(e) -1 EX_acald(e) -1 EX_acetone(e) -1 EX_acgalfucgalacgalfuc12gal14acglcgalgluside_hs(e) -1 EX_acgalfucgalacgalfucgalacglcgal14acglcgalgluside_hs(e) -1 EX_acgam(e) -1 EX_ach(e) -1 EX_acn13acngalgbside_hs(e) -1 EX_acn23acngalgbside_hs(e) -1 EX_acnacngal14acglcgalgluside_hs(e) -1 EX_acnacngalgbside_hs(e) -1 EX_acngalacglcgal14acglcgalgluside_hs(e) -1 EX_ade(e) -1 EX_adp -1 EX_adprbp(e) -1 EX_adprib(e) -1 EX_adrn(e) -1 EX_adrnl(e) -1 EX_aflatoxin(e) -1 EX_ahandrostanglc(e) -1 EX_ak2lgchol_hs(e) -1 EX_akg(e) -1 EX_ala_B(e) -1 EX_ala_D(e) -1 EX_ala_L(e) -1 EX_aldstrn(e) -1 EX_amp(e) -1 EX_andrstrn(e) -1 EX_andrstrnglc(e) -1 EX_antipyrene(e) -1 EX_apnnox(e) -1 EX_appnn(e) -1 EX_aprgstrn(e) -1 EX_aqcobal(e) -1 EX_arab_L(e) -1 EX_arachd(e) -1 EX_arg_L(e) -1 EX_ascb_L(e) -100 EX_asn_L(e) -1 EX_asp_D(e) -1 EX_asp_L(e) -1 EX_atp(e) -1 EX_avite1(e) -1 EX_avite2(e) -1 EX_bhb(e) -1 EX_bildglcur(e) -1 EX_bilglcur(e) -1 EX_bilirub(e) -1 EX_biocyt(e) -1 EX_btn(e) -100 EX_but(e) -1 EX_bvite(e) -1 EX_bz(e) -1 EX_ca2(e) -1 EX_camp(e) -1 EX_caro(e) -1 EX_carveol(e) -1 EX_cca_d3(e) -1 EX_cgly(e) -1 EX_chsterol(e) -1 EX_chtn(e) -1 EX_cit(e) -1 EX_CLPND(e) -1 EX_cmp(e) -1 EX_co(e) -1 EX_co2(e) -100 EX_coumarin(e) -1 EX_creat(e) -1 EX_crmp_hs(e) -1 EX_crtsl(e) -1 EX_crtstrn(e) -1 EX_crvnc(e) -1 EX_csn(e) -1 EX_cspg_a(e) -1 EX_cspg_b(e) -1 EX_cspg_c(e) -1 EX_cspg_d(e) -1 EX_cspg_e(e) -1 EX_cyan(e) -1 EX_dcsptn1(e) -1 EX_debrisoquine(e) -1 EX_dgchol(e) -1 EX_dheas(e) -1 EX_dhf(e) -1 EX_digalsgalside_hs(e) -1 EX_dlnlcg(e) -1 EX_dmantipyrine(e) -1 EX_dmhptcrn(e) -1 EX_dopa(e) -1 EX_dopasf(e) -1 EX_drib(e) -1 EX_duri(e) -1 EX_eaflatoxin(e) -1 EX_ebastine(e) -1 EX_ebastineoh(e) -1 EX_eicostet(e) -1 EX_elaid(e) -1 EX_estradiol(e) -1 EX_estradiolglc(e) -1 EX_estriolglc(e) -1 EX_estroneglc(e) -1 EX_estrones(e) -1 EX_etoh(e) -1 EX_fe2(e) -1 EX_fe3(e) -1 EX_for(e) -1 EX_fru(e) -1 EX_fuc13galacglcgal14acglcgalgluside_hs(e) -1 EX_fuc14galacglcgalgluside_hs(e) -1 EX_fucacgalfucgalacglcgalgluside_hs(e) -1 EX_fucacngal14acglcgalgluside_hs(e) -1 EX_fucacngalacglcgalgluside_hs(e) -1 EX_fucfuc12gal14acglcgalgluside_hs(e) -1 EX_fucfuc132galacglcgal14acglcgalgluside_hs(e) -1 EX_fucfucfucgalacglc13galacglcgal14acglcgalgluside_hs(e) -1 EX_fucfucfucgalacglcgal14acglcgalgluside_hs(e) -1 EX_fucfucgalacglcgalgluside_hs(e) -1 EX_fucgal14acglcgalgluside_hs(e) -1 EX_fucgalfucgalacglcgalgluside_hs(e) -1 EX_fucgalgbside_hs(e) -1 EX_fuc_L(e) -1 EX_galacglcgalgbside_hs(e) -1 EX_galfuc12gal14acglcgalgluside_hs(e) -1 EX_galfucgalacglcgal14acglcgalgluside_hs(e) -1 EX_galgalfucfucgalacglcgalacglcgal14acglcgalgluside_hs(e) -1 EX_galgalgalthcrm_hs(e) -1 EX_gbside_hs(e) -1 EX_gchola(e) -1 EX_gd1b2_hs(e) -1 EX_gd1c_hs(e) -1 EX_gdp(e) -1 EX_glc(e) -1 EX_gln_L(e) -1 EX_gluala(e) -1 EX_glu_L(e) -1 EX_glyb(e) -1 EX_glyc_S(e) -1 EX_glygn2(e) -1 EX_glygn4(e) -1 EX_glygn5(e) -1 EX_gmp(e) -1 EX_gp1c_hs(e) -1 EX_gp1calpha_hs(e) -1 EX_gq1b_hs(e) -1 EX_gq1balpha_hs(e) -1 EX_gt1a_hs(e) -1 EX_gthox(e) -1 EX_gthrd(e) -1 EX_gtp(e) -1 EX_gua(e) -1 EX_h(e) -100 EX_h2o(e) -100 EX_h2o2(e) -1 EX_ha(e) -1 EX_ha_pre1(e) -1 EX_hco3(e) -100 EX_hcoumarin(e) -1 EX_hdca(e) -1 EX_hestratriol(e) -1 EX_hexc(e) -1 EX_hista(e) -1 EX_hom_L(e) -1 EX_hpdca(e) -1 EX_hspg(e) -1 EX_htaxol(e) -1 EX_hxan(e) -1 EX_i(e) -1 EX_idp(e) -1 EX_ile_L(e) -1 EX_imp(e) -1 EX_inost(e) -1 EX_k(e) -1 EX_ksi(e) -1 EX_ksi_deg1(e) -1 EX_ksii_core2(e) -1 EX_ksii_core4(e) -1 EX_lac_D(e) -1 EX_lac_L(e) -1 EX_lcts(e) -1 EX_Lcystin(e) -1 EX_leuktrA4(e) -1 EX_leuktrB4(e) -1 EX_leuktrC4(e) -1 EX_leuktrD4(e) -1 EX_leuktrE4(e) -1 EX_leuktrF4(e) -1 EX_leu_L(e) -1 EX_lgnc(e) -1 EX_limnen(e) -1 EX_lipoate(e) -1 EX_lneldc(e) -1 EX_lnlc(e) -1 EX_lnlnca(e) -1 EX_lnlncg(e) -1 EX_lys_L(e) -1 EX_malttr(e) -1 EX_meoh(e) -1 EX_mepi(e) -1 EX_mercplaccys(e) -1 EX_met_L(e) -1 EX_mthgxl(e) -1 EX_n2m2nmasn(e) -1 EX_nac(e) -1 EX_nad(e) -1 EX_nadp(e) -1 EX_ncam(e) -1 EX_nh4(e) -100 EX_nifedipine(e) -1 EX_no(e) -1 EX_npthl(e) -1 EX_nrpphr(e) -1 EX_nrpphrsf(e) -1 EX_nrvnc(e) -1 EX_o2s(e) -1 EX_oagd3_hs(e) -1 EX_oagt3_hs(e) -1 EX_ocdcea(e) -1 EX_omeprazole(e) -1 EX_onpthl(e) -1 EX_orn(e) -1 EX_oxa(e) -1 EX_paf_hs(e) -1 EX_pchol_hs(e) -1 EX_peplys(e) -1 EX_perillyl(e) -1 EX_pglyc_hs(e) -1 EX_pheacgln(e) -1 EX_phyQ(e) -1 EX_phyt(e) -1 EX_pi(e) -100 EX_pnto_R(e) -100 EX_ppa(e) -1 EX_prgstrn(e) -1 EX_pro_D(e) -1 EX_pro_L(e) -1 EX_prostgd2(e) -1 EX_prostge1(e) -1 EX_prostge2(e) -1 EX_prostgf2(e) -1 EX_ps_hs(e) -1 EX_ptdca(e) -1 EX_pyr(e) -1 EX_rbt(e) -1 EX_retfa(e) -1 EX_retinol(e) -100 EX_retinol_9_cis(e) -1 EX_retinol_cis_11(e) -1 EX_retn(e) -100 EX_retnglc(e) -1 EX_Rtotal(e) -1 EX_Rtotal2(e) -1 EX_Rtotal3(e) -1 EX_s2l2fn2m2masn(e) -1 EX_s2l2n2m2masn(e) -1 EX_sarcs(e) -1 EX_sel(e) -1 EX_ser_D(e) -1 EX_ser_L(e) -1 EX_sl_L(e) -1 EX_so4(e) -100 EX_spc_hs(e) -1 EX_sph1p(e) -1 EX_sphs1p(e) -1 EX_srtn(e) -1 EX_strch1(e) -1 EX_strch2(e) -1 EX_strdnc(e) -1 EX_succ(e) -1 EX_sucr(e) -1 EX_tag_hs(e) -1 EX_tagat_D(e) -1 EX_taur(e) -1 EX_taxol(e) -1 EX_tchola(e) -1 EX_tcynt(e) -1 EX_tdchola(e) -1 EX_tethex3(e) -1 EX_tetpent3(e) -1 EX_tetpent6(e) -1 EX_tettet6(e) -1 EX_thf(e) -1 EX_thmmp(e) -1 EX_thmtp(e) -1 EX_thr_L(e) -1 EX_thym(e) -1 EX_thymd(e) -1 EX_thyox_L(e) -1 EX_tmndnc(e) -1 EX_tolbutamide(e) -1 EX_tre(e) -1 EX_triodthy(e) -1 EX_triodthysuf(e) -1 EX_trp_L(e) -1 EX_tststerone(e) -1 EX_tststeroneglc(e) -1 EX_tststerones(e) -1 EX_tsul(e) -1 EX_txa2(e) -1 EX_tymsf(e) -1 EX_Tyr_ggn(e) -1 EX_tyr_L(e) -1 EX_udp(e) -1 EX_ump(e) -1 EX_ura(e) -1 EX_urate(e) -1 EX_urea(e) -1 EX_uri(e) -1 EX_utp(e) -1 EX_vacc(e) -1 EX_val_L(e) -1 EX_vitd2(e) -100 EX_whddca(e) -1 EX_whhdca(e) -1 EX_whtststerone(e) -1 EX_whttdca(e) -1 EX_xolest_hs(e) -1 EX_xolest2_hs(e) -1 EX_xoltri24(e) -1 EX_xoltri25(e) -1 EX_xoltri27(e) -1 EX_xyl_D(e) -1 EX_yvite(e) -1 sink_pre_prot(r) -1 EX_4abutn(e) -1 EX_acmana(e) -1 EX_ahdt(e) -1 EX_ctp(e) -1 EX_dgmp(e) -1 EX_dgtp(e) -1 EX_dha(e) -1 EX_dhap(e) -1 EX_dtmp(e) -1 EX_dttp(e) -1 EX_fad(e) -1 EX_fald(e) -1 EX_g1p(e) -1 EX_HC00229(e) -1 EX_HC00250(e) -1 EX_HC01104(e) -1 EX_HC01361(e) -1 EX_HC01440(e) -1 EX_HC01441(e) -1 EX_HC01444(e) -1 EX_HC01446(e) -1 EX_HC01577(e) -1 EX_HC01609(e) -1 EX_HC01610(e) -1 EX_HC01700(e) -1 EX_HC02160(e) -1 EX_HC02161(e) -1 EX_itp(e) -1 EX_orot(e) -1 EX_prpp(e) -1 EX_ptrc(e) -1 EX_pydx5p(e) -1 EX_spmd(e) -1 EX_udpg(e) -1 EX_no2(e) -1 EX_so3(e) -1 EX_sprm(e) -1 EX_prostgh2(e) -1 EX_prostgi2(e) -1 EX_ppi(e) -1 EX_cdp(e) -1 EX_dtdp(e) -1 EX_HC00955(e) -1 EX_HC00001(e) -1 EX_HC00002(e) -1 EX_HC00003(e) -1 EX_HC00004(e) -1 EX_citr_L(e) -1 EX_HC01787(e) -1 EX_C02470(e) -1 EX_HC01852(e) -1 EX_HC01939(e) -1 EX_HC01942(e) -1 EX_HC01943(e) -1 EX_HC01944(e) -1 EX_HC00822(e) -1 EX_C02528(e) -1 EX_HC02192(e) -1 EX_HC02193(e) -1 EX_HC02195(e) -1 EX_HC02196(e) -1 EX_HC02220(e) -1 EX_HC02154(e) -1 EX_HC02175(e) -1 EX_HC02176(e) -1 EX_HC02199(e) -1 EX_HC02200(e) -1 EX_HC02201(e) -1 EX_HC02172(e) -1 EX_HC02191(e) -1 EX_HC02194(e) -1 EX_HC02197(e) -1 EX_HC02198(e) -1 EX_HC02187(e) -1 EX_HC02180(e) -1 EX_HC02179(e) -1 EX_HC02202(e) -1 EX_HC02203(e) -1 EX_HC02204(e) -1 EX_HC02205(e) -1 EX_HC02206(e) -1 EX_HC02207(e) -1 EX_HC02208(e) -1 EX_HC02210(e) -1 EX_HC02213(e) -1 EX_HC02214(e) -1 EX_HC02216(e) -1 EX_HC02217(e) -1 EX_malcoa(e) -1 EX_arachcoa(e) -1 EX_coa(e) -1 EX_CE2250(e) -1 EX_CE1935(e) -1 EX_CE1940(e) -1 EX_CE1943(e) -1 EX_CE2011(e) -1 EX_CE1936(e) -1 EX_CE1939(e) -1 EX_maltttr(e) -1 EX_maltpt(e) -1 EX_malthx(e) -1 EX_CE2915(e) -1 EX_CE4722(e) -1 EX_CE2916(e) -1 EX_CE4723(e) -1 EX_CE2917(e) -1 EX_CE4724(e) -1 EX_malthp(e) -1 EX_CE2839(e) -1 EX_CE2838(e) -1 EX_CE1950(e) -1 EX_cynt(e) -1 EX_23cump(e) -1 EX_3ump(e) -1 EX_CE5786(e) -1 EX_CE5788(e) -1 EX_CE5789(e) -1 EX_CE5797(e) -1 EX_CE5798(e) -1 EX_CE5787(e) -1 EX_CE5791(e) -1 EX_CE5867(e) -1 EX_CE5868(e) -1 EX_CE5869(e) -1 EX_CE4633(e) -1 EX_CE4881(e) -1 EX_CE5854(e) -1 EX_glcur(e) -1 EX_CE1926(e) -1 EX_udpgal(e) -1 EX_crm_hs(e) -1 EX_galside_hs(e) -1 EX_CE0074(e) -1 EX_cdpea(e) -1 EX_12dgr120(e) -1 EX_CE5853(e) -1 EX_CE1925(e) -1 EX_C05965(e) -1 EX_C04849(e) -1 maxConstraints:
Select the biomass reaction to optimise
model.biomassBool = strcmp(model.rxns, 'biomass_reaction');
model.c(model.biomassBool) = 1;
Display the biomass reaction
rxnAbbrList={'biomass_reaction'};
printFlag = 1;
formulas = printRxnFormula(model, rxnAbbrList, printFlag);
biomass_reaction 20.6508 h2o[c] + 20.7045 atp[c] + 0.385872 glu_L[c] + 0.352607 asp_L[c] + 0.036117 gtp[c] + 0.279425 asn_L[c] + 0.505626 ala_L[c] + 0.046571 cys_L[c] + 0.325996 gln_L[c] + 0.538891 gly[c] + 0.392525 ser_L[c] + 0.31269 thr_L[c] + 0.592114 lys_L[c] + 0.35926 arg_L[c] + 0.153018 met_L[c] + 0.023315 pail_hs[c] + 0.039036 ctp[c] + 0.154463 pchol_hs[c] + 0.055374 pe_hs[c] + 0.020401 chsterol[c] + 0.002914 pglyc_hs[c] + 0.011658 clpn_hs[c] + 0.053446 utp[c] + 0.009898 dgtp[n] + 0.009442 dctp[n] + 0.013183 datp[n] + 0.013091 dttp[n] + 0.275194 g6p[c] + 0.126406 his_L[c] + 0.159671 tyr_L[c] + 0.286078 ile_L[c] + 0.545544 leu_L[c] + 0.013306 trp_L[c] + 0.259466 phe_L[c] + 0.412484 pro_L[c] + 0.005829 ps_hs[c] + 0.017486 sphmyln_hs[c] + 0.352607 val_L[c] -> 20.6508 adp[c] + 20.6508 h[c] + 20.6508 pi[c]

Sparse flux balance analysis

We provide two options to run sparse flux balance analysis. A: directly in one step, no quality control, and B: two steps, all approximations, with a heuristic sparsity test.

TIMING

The time to compute a sparse flux balance analysis solution depends on the size of the genome-scale model and the option chosen to run sparse flux balance analysis. Option A: directly in one step, no quality control, can take anything from <0.1 seconds for a 1,000 reaction model, to 1,000 seconds for a model with 20,000 reactions. Option B: two steps, all approximations, with a sparsity test could take hours for a model with >10,000 reactions because the length of time for the heuristic sparsity test is proportional to the number of active reactions in an approximate sparse solution.

A. Sparse flux balance analysis (directly in one step, no quality control)

This approach computes a sparse flux balance analysis solution, satisfying the FBA objection, with the default approach to approximate the solution to the cardinality minimisation problem underling sparse FBA. This approach does not check the quality of the solution, i.e., whether indeed it is the sparsest flux vector satisfing the optimality criterion .
First choose whether to maximize ('max') or minimize ('min') the FBA objective. Here we choose maximise
osenseStr='max';
Choose to minimize the zero norm of the optimal flux vector
minNorm='zero';
Run sparse flux balance analysis
sparseFBAsolution = optimizeCbModel(model, osenseStr, minNorm);
Obtain the vector of reaction rates from the solution structure
v = sparseFBAsolution.v;
Display the sparse flux solution, but only the non-zero fluxes
nonZeroFlag = 1;
printFluxVector(model, v, nonZeroFlag);
3MOBt2im 0.127657 3MOPt2im 49.4471 4ABUTtm 0.0439253 ABTArm 0.0439253 ABUTt2r 0.0439253 ADEt -3.17842 ADK1 -3.03312 ADK1m -0.0837315 ADK3 -0.27054 ADNtm -0.0837315 ALAt2r 1 ALATA_L -0.137857 AMPDA 0.147159 ARGtiDF 1 R_group_phosphotase_1 0.0559212 ASNt4 0.893617 ASPGLUm 0.127657 ASPTAm -0.127657 BTNDe 0.893613 CATm 0.024882 CDIPTr -0.0372829 CHOLt4 0.493981 CLS_hs 0.0372829 CYOR_u10m 9.95278 CYSTA 0.150649 CYTK4 0.155035 DAGK_hs 0.0559212 DATPtn 0.04216 DCMPDA -0.155035 DCTPtn 0.030196 DESAT18_4 0.11773 DESAT18_7 0.11773 DGTPtn 0.0316544 DNDPt9m 0.0418657 DOPACHRMISO 2.29026 DSAT 0.0559212 DTTPtn 0.0418657 DURIK1 0.0932265 ENO 5.22241 EX_4abut(e) -0.0439253 EX_ade(e) 2.17842 EX_ala_L(e) -1 EX_amp(e) 1 EX_arg_L(e) -1 EX_asn_L(e) -0.893617 EX_asp_L(e) -1 EX_atp(e) -1 EX_biocyt(e) -0.893613 EX_btn(e) 0.893613 EX_chol(e) -0.493981 EX_chsterol(e) -0.0652435 EX_duri(e) -0.0932265 EX_gln_L(e) -1 EX_gly(e) -0.974083 EX_h2o2(e) -1 EX_hco3(e) -0.0837315 EX_his_L(e) -0.404253 EX_ile_L(e) -0.914893 EX_inost(e) -0.0745627 EX_leu_L(e) -1 EX_lneldc(e) 0.11773 EX_lpchol_hs(e) -0.0559212 EX_lys_L(e) -1 EX_mercplaccys(e) 0.150649 EX_met_L(e) -0.48936 EX_no(e) -0.148933 EX_o2(e) -6.68552 EX_ocdca(e) -0.11773 EX_orn(e) -0.84642 EX_pe_hs(e) -0.177089 EX_pglyc_hs(e) -0.0466021 EX_phe_L(e) -0.829787 EX_pi(e) 7.60762 EX_pro_L(e) -1 EX_ps_hs(e) -0.624468 EX_pyr(e) 4.20007 EX_ser_L(e) -1 EX_sph1p(e) -0.0559212 EX_thr_L(e) -1 EX_thymd(e) -0.0418657 EX_trp_L(e) -0.0425533 EX_tyr_L(e) -0.510637 EX_ura(e) 0.767268 EX_utp(e) -1 EX_val_L(e) -1 FACOAL1822 -0.11773 FATP3t -0.11773 FBA 0.435143 FUMm 0.0439253 G3PD2m 0.0559212 GAPD 5.22241 GK1 0.147159 GLNS 0.0425533 GLNt4 1 GLUDxm 0.647824 GLUt2m 48.4859 GLYt2r 0.974083 GPDDA1 0.0559212 GTHRDt -49.6274 H2O2t 1 H2Ot 1.56714 H2Otm -7.19359 HISt4 0.404253 HPYRRy 0.35051 ILEt4 0.914893 ILEt5m -49.4471 ILETA 49.4471 ILETAm -49.4471 INSTt2r 0.0745627 LEUt4 1 LNELDCt -0.11773 LPASE 0.0559212 LPCHOLt 0.0559212 LYSt4 1.89361 MCLACCYSR 0.150649 MCLOR -0.150649 MDHm 0.0439253 MERCPLACCYSt 0.150649 METtec 0.48936 NADH2_u10m 6.18955 NDPK6 -0.705459 NTD7 3.09469 O2t 6.68552 O2tm 4.90175 ORNt3m -0.84642 ORNTArm 0.84642 ORNtiDF 0.84642 P5CDm 0.430173 P5CRm 0.0837315 PCm 0.0837315 PEt 0.177089 PGI -0.880086 PGK -5.22241 PGLYCt 0.0466021 PGM -5.22241 PHEtec 0.829787 PPM 3.94569 PRO1xm 4.17729 PROt2r 1 PSSA1_hs -0.549902 PSt3 0.624468 PUNP1 3.17842 PYK 5.06486 PYNP2r 0.767268 PYRt2m 0.0837315 PYRt2r -4.20007 RNDR1 0.125891 RNDR2 0.0316544 RNDR4 0.0618088 RPI 2.63046 SMS 0.0559212 SPH1Pte -0.0559212 SPODMm 0.0497639 THMDt4 0.0418657 THRt4 1 TKT1 1.31523 TKT2 1.31523 TMDK1 0.0418657 TPI 1.80629 TRDR 0.0945153 TRIOK 0.35051 TRPt 0.0425533 TYRt 0.510637 UMPK -0.612233 UMPK6 -0.155035 URAt -0.767268 VALt4 1 VALt5m -0.127657 VALTAm -0.127657 EX_ahdt(e) 1 EX_dgmp(e) 0.539243 EX_dgtp(e) -0.539243 EX_HC00250(e) -0.450235 EX_HC01361(e) -1 EX_prpp(e) -1 r0010 0.5 r0047 0.0837315 r0051 -1 r0074 0.84642 r0145 -0.148933 r0160 0.35051 r0178 0.0439253 r0191 0.435143 r0193 -0.450235 r0276 0.147159 r0280 0.0840257 r0392 -0.35051 r0407 1.31523 r0408 0.921296 r0409 0.393933 r0410 0.539243 r0413 0.0316544 r0474 0.124839 r0509 0.0439253 r0707 -1 r0787 0.0559212 r0817 -0.148933 r0838 -0.647824 r0885 0.167463 r0892 -1 r0911 0.430173 r0940 -0.450235 r0941 0.0837315 r1050 0.0652435 r1116 -3.53924 r1117 0.0418657 r1143 1 r1156 -0.767268 r1423 5.66708 r1431 0.0837315 r1433 0.0837315 r1453 -3.66338 r2447 0.0932265 r2471 1 r2520 49.4599 RE0344C -0.11773 RE0452M 0.0418657 RE2675C 0.0559212 RE2954C 0.0418657 RE3198C 4.58051 RE3273C -0.111846 RE3301C 0.0559244 EX_ppi(e) -1 EX_citr_L(e) -0.148933 PIt9 -4.94055 CYOOm3 4.97639 biomass_reaction 3.19806 ALAALACNc 0.0643263 ALAALAPEPT1tc 0.0643263 LEULEULAPc 0.37234 LEULEUPEPT1tc 0.37234 PROGLYPEPT1tc 0.74932 PROGLYPRO1c 0.74932 3HCO3_NAt 0.0279105 DATPtm 0.0418657 DUTPDP 0.0618088 EX_alaala(e) -0.0643263 EX_leuleu(e) -0.37234 EX_progly(e) -0.74932 EX_dpcoa(e) -2.53924 EX_pan4p(e) 2.53924 FADH2ETC 0.0559212 NODe -0.148933 PTPATe -2.53924 RPEc 1.31523 3MOBte 0.127657 EX_3mob(e) -0.127657
Display the number of active reactions
fprintf('%u%s\n',nnz(v),' active reactions in the sparse flux balance analysis solution.');
805 active reactions in the sparse flux balance analysis solution.

ANTICIPATED RESULTS

Typically, a sparse flux balance analysis solution will have a small fraction of the number of reactions active than in a flux balance analysis solution, e.g., Recon 2.04 model has 7,440 reactions. When maximising biomass production, a typical flux balance analysis solution might have approximately 2,000 active reactions (this is LP solver dependent) whereas for the same problem there are 247 active reactions in the sparse flux balance analysis solution from optimizeCbModel (using the default capped L1 norm approximate step function, see below).

B. Sparse flux balance analysis (two steps, all approximations, with a sparsity test)

This approach computes a sparse flux balance analysis solution, satisfying the FBA objection, with the default approach to approximate the solution to the cardinality minimisation problem underlying sparse FBA. This approach does not check the quality of the solution, i.e., whether indeed it is the sparsest flux vector satisfing the optimality criterion .

Solve a flux balance analysis problem

Build a linear programming problem structure (LPproblem) that is compatible with the interface function (solveCobraLP) to any installed linear optimisation solver.
[c,S,b,lb,ub,csense] = deal(model.c,model.S,model.b,model.lb,model.ub,model.csense);
[m,n] = size(S);
LPproblem = struct('c',c,'osense',-1,'A',S,'csense',csense,'b',b,'lb',lb,'ub',ub);
Now solve the flux balance analysis problem
LPsolution = solveCobraLP(LPproblem);
if LPsolution.stat == 1
vFBA = LPsolution.full(1:n);
else
vFBA = [];
error('FBA problem error!')
end
Display the number of active reactions
fprintf('%u%s\n',nnz(vFBA),' active reactions in the flux balance analysis solution.');
1876 active reactions in the flux balance analysis solution.

Approimations underlying sparse flux balance analysis

Due to its combinatorial nature, minimising the zero norm explicitly is an NP-hard problem. Therefore we approximately solve the problem. The approach is to replace the zero norm with a separable sum of step functions, which are each approximated by anther function. Consider the step function ς(t): R R where ς (t)=1 if t0 and ς (t)=0 otherwise, illustrated in the Figure below:
There are then many different approximate step functions that can be minimised. The figure below illustrates the many different approximate step functions that can be chosen to be minimised instead of an explicit step function.
Depending on the application, and the biochemical network, one or other approximation may outperform the rest, therefore a pragmatic strategy is to try each and select the most sparse flux vector. The step set of function approximations available are
* 'cappedL1' : Capped-L1 norm
* 'exp' : Exponential function
* 'log' : Logarithmic function
* 'SCAD' : SCAD function
* 'lp-' : L_p norm with p<0
* 'lp+' : L_p norm with 0<p<1
Here we prepare a cell array of strings which indicate the set of step function approximations we wish to compare.
approximations = {'cappedL1','exp','log','SCAD','lp-','lp+'};

Run the sparse linear optimisation solver

First we must build a problem structure to pass to the sparse solver, by adding an additional constraint requiring that the sparse flux solution also satisfies the optimal objective value from flux balance analysis
constraint.A = [S ; c'];
constraint.b = [b ; c'*vFBA];
constraint.csense = [csense;'E'];
constraint.lb = lb;
constraint.ub = ub;
Now we call the sparse linear step function approximations
bestResult = n;
bestAprox = '';
for i=1:length(approximations)
solution = sparseLP(char(approximations(i)),constraint);
if solution.stat == 1
nnzSol=nnz(abs(solution.x)>feasTol);
fprintf('%u%s%s',nnzSol,' active reactions in the sparseFBA solution with ', char(approximations(i)));
if bestResult > nnzSol
bestResult=nnzSol;
bestAprox = char(approximations(i));
solutionL0 = solution;
end
end
end
247 active reactions in the sparseFBA solution with cappedL1
247 active reactions in the sparseFBA solution with exp
247 active reactions in the sparseFBA solution with log
247 active reactions in the sparseFBA solution with SCAD
247 active reactions in the sparseFBA solution with lp-
247 active reactions in the sparseFBA solution with lp+
Select the most sparse flux vector, unless there is a numerical problem.
if ~isequal(bestAprox,'')
vBest = solutionL0.x;
else
vBest = [];
error('Min L0 problem error !!!!')
end
Report the best approximation
display(strcat('Best step function approximation: ',bestAprox));
Best step function approximation:cappedL1
Report the number of active reactions in the most sparse flux vector
fprintf('%u%s',nnz(abs(vBest)>feasTol),' active reactions in the best sparse flux balance analysis solution.');
247 active reactions in the best sparse flux balance analysis solution.
Warn if there might be a numerical issue with the solution
feasError=norm(constraint.A * solutionL0.x - constraint.b,2);
if feasError>feasTol
fprintf('%g\t%s\n',feasError, ' feasibily error.')
warning('Numerical issue with the sparseLP solution')
end

Heuristically check if the selected set of reactions is minimal

Each step function approximation minimises a different problem than minimising the zero norm explicitly. Therefore it is wise to test, at least heuristically, if the most sparse approximate solution to minimising the zero norm is at least locally optimal, in the sense that the set of predicted reactions cannot be reduced by omitting, one by one, an active reaction. If it is locally optimal in this sense, one can be more confident that the most sparse approximate solution is the most sparse solution, but still there is no global guarantee, as it is a combinatorial issue.
Identify the set of predicted active reactions
activeRxnBool = abs(vBest)>feasTol;
nActiveRnxs = nnz(activeRxnBool);
activeRxns = false(n,1);
activeRxns(activeRxnBool) = true;
minimalActiveRxns=activeRxns;
Close all predicted non-active reactions by setting their lb = ub = 0
lbSub = model.lb;
ubSub = model.ub;
lbSub(~activeRxns) = 0;
lbSub(~activeRxns) = 0;
Generate an LP problem to be reduced
% Check if one still can achieve the same objective
LPproblem = struct('c',-c,'osense',-1,'A',S,'csense',csense,'b',b,'lb',lbSub,'ub',ubSub);
For each active reaction in the most sparse approximate flux vector, one by one, set the reaction bounds to zero, then test if the optimal flux balance analysis objective value is still attained. If it is, then that reaction is not part of the minimal set. If it is not, then it is probably part of the minimal set.
for i=1:n
if activeRxnBool(i)
LPproblem.lb = model.lb;
LPproblem.ub = model.ub;
%close bounds on this reaction
LPproblem.lb(i) = 0;% Close the reaction
LPproblem.ub(i) = 0;% Close the reaction
%solve the LP problem
LPsolution = solveCobraLP(LPproblem);
%check if the optimal FBA objective is attained
if LPsolution.stat == 1 && abs(LPsolution.obj + c'*vFBA)<1e-8
minimalActiveRxns(i) = 0;
vBestTested = LPsolution.full(1:n);
else
%relax those bounds if reaction appears to be part of the minimal set
LPproblem.lb(i) = model.lb(i);
LPproblem.ub(i) = model.ub(i);
end
end
end
Report the number of active reactions in the approximately most sparse flux vector, or the reduced approximately most sparse flux vector, if it is more sparse.
if nnz(minimalActiveRxns)<nnz(activeRxns)
fprintf('%u%s',nnz(abs(vBestTested)>feasTol),' active reactions in the best sparseFBA solution (tested).');
nonZeroFlag = 1;
printFluxVector(model, vBestTested, nonZeroFlag);
else
fprintf('%u%s',nnz(abs(vBest)>feasTol),' active reactions in the best sparseFBA solution (tested).');
end
247 active reactions in the best sparseFBA solution (tested).

REFERENCES

[1] Meléndez-Hevia, E., Isidoro, A. (1085). The game of the pentose phosphate cycle. Journal of Theoretical Biology 117, 251-263.
[2] Thiele, I., Swainston, N., Fleming, R.M., Hoppe, A., Sahoo, S., Aurich, M.K., Haraldsdottir, H., Mo, M.L., Rolfsson, O., Stobbe, M.D., et al. (2013). A community-driven global reconstruction of human metabolism. Nat Biotechnol 31, 419-425.
[3] Fleming, R.M.T., et al. (submitted, 2017). Cardinality optimisation in constraint-based modelling: illustration with Recon 3D.
[4] Le Thi, H.A., Pham Dinh, T., Le, H.M., and Vo, X.T. (2015). DC approximation approaches for sparse optimization. European Journal of Operational Research 244, 26-46.