Varying Parameters analysis

Author(s): Vanja Vlasov, Systems Biochemistry Group, LCSB, University of Luxembourg.
Reviewer(s): Thomas Pfau, Systems Biology Group, LSRU, University of Luxembourg.
Ines Thiele, Molecular Systems Physiology Group, LCSB, University of Luxembourg
Almut Heinken, Molecular Systems Physiology Group, LCSB, University of Luxembourg
In this tutorial, we show how computations are performed by varying one or two parameters over a fixed range of numerical values.

EQUIPMENT SETUP

If necessary, initialise the cobra toolbox:
initCobraToolbox(false) % false, as we don't want to update
_____ _____ _____ _____ _____ | / ___| / _ \ | _ \ | _ \ / ___ \ | COnstraint-Based Reconstruction and Analysis | | | | | | | |_| | | |_| | | |___| | | The COBRA Toolbox - 2017 | | | | | | | _ { | _ / | ___ | | | |___ | |_| | | |_| | | | \ \ | | | | | Documentation: \_____| \_____/ |_____/ |_| \_\ |_| |_| | http://opencobra.github.io/cobratoolbox | > Checking if git is installed ... Done. > Checking if the repository is tracked using git ... Done. > Checking if curl is installed ... Done. > Checking if remote can be reached ... Done. > Initializing and updating submodules ... Done. > Adding all the files of The COBRA Toolbox ... Done. > Define CB map output... set to svg. > Retrieving models ... Done. > TranslateSBML is installed and working properly. > Configuring solver environment variables ... - [*---] ILOG_CPLEX_PATH: C:\Program Files\IBM\ILOG\CPLEX_Studio1263\cplex\matlab\x64_win64 - [*---] GUROBI_PATH: C:\gurobi650\win64\matlab - [*---] TOMLAB_PATH: C:\tomlab\ - [----] MOSEK_PATH : --> set this path manually after installing the solver ( see instructions ) Done. > Checking available solvers and solver interfaces ... Done. > Setting default solvers ... Done. > Saving the MATLAB path ... Done. - The MATLAB path was saved in the default location. > Summary of available solvers and solver interfaces Support LP MILP QP MIQP NLP ---------------------------------------------------------------------- cplex_direct full 0 0 0 0 - dqqMinos full 0 - - - - glpk full 1 1 - - - gurobi full 1 1 1 1 - ibm_cplex full 0 0 0 - - matlab full 1 - - - 1 mosek full 0 0 0 - - pdco full 1 - 1 - - quadMinos full 0 - - - 0 tomlab_cplex full 1 1 1 1 - qpng experimental - - 1 - - tomlab_snopt experimental - - - - 1 gurobi_mex legacy 0 0 0 0 - lindo_old legacy 0 - - - - lindo_legacy legacy 0 - - - - lp_solve legacy 1 - - - - opti legacy 0 0 0 0 0 ---------------------------------------------------------------------- Total - 6 3 4 2 2 + Legend: - = not applicable, 0 = solver not compatible or not installed, 1 = solver installed. > You can solve LP problems using: 'glpk' - 'gurobi' - 'matlab' - 'pdco' - 'tomlab_cplex' - 'lp_solve' > You can solve MILP problems using: 'glpk' - 'gurobi' - 'tomlab_cplex' > You can solve QP problems using: 'gurobi' - 'pdco' - 'tomlab_cplex' - 'qpng' > You can solve MIQP problems using: 'gurobi' - 'tomlab_cplex' > You can solve NLP problems using: 'matlab' - 'tomlab_snopt' > Checking for available updates ... --> You cannot update your fork using updateCobraToolbox(). [535a88 @ develop]. Please use the MATLAB.devTools (https://github.com/opencobra/MATLAB.devTools).
For solving linear programming problems in the analysis, certain solvers are required:
changeCobraSolver ('gurobi', 'all', 1);
%changeCobraSolver ('glpk', 'all', 1);
> Solver for LPproblems has been set to glpk. > Solver for MILPproblems has been set to glpk. > Solver glpk not supported for problems of type MIQP. Currently used: tomlab_cplex > Solver glpk not supported for problems of type NLP. Currently used: matlab > Solver glpk not supported for problems of type QP. Currently used: qpng
The present tutorial can run with 'glpk' package, which does not require additional installation and configuration. Although, for the analysis of large models is recommended to use the 'gurobi' package.

PROCEDURE

Before proceeding with the simulations, the path for the model needs to be set up. In this tutorial, the used model is the generic model of human metabolism, Recon 3 [1]. Therefore, we assume, that the cellular objectives include energy production or optimisation of uptake rates and by-product secretion for various physiological functions of the human body. If Recon 3 is not available, please use Recon 2.
%For Recon3D Change the model
modelFileName = 'Recon2.0model.mat';
modelDirectory = getDistributedModelFolder(modelFileName); %Look up the folder for the distributed Models.
modelFileName= [modelDirectory filesep modelFileName]; % Get the full path. Necessary to be sure, that the right model is loaded
model = readCbModel(modelFileName);
If Recon2 is used, the reaction nomenclature needs to be adjusted.
model.rxns(find(ismember(model.rxns,'EX_glc(e)')))={'EX_glc_D[e]'};
model.rxns(find(ismember(model.rxns,'EX_o2(e)')))={'EX_o2[e]'};

TROUBLESHOOTING

If there are multiple energy sources available in the model; Specifying more constraints is necessary. If we do not do that, we will have additional carbon and oxygen energy sources available in the cell and the maximal ATP production.
To avoid this issue, all external carbon sources need to be closed.
%Closing the uptake of all energy and oxygen sources
for i=1:length(model.rxns)
if strncmp(model.rxns{i},'EX_',3)
model.subSystems{i}='Exchange/demand reaction';
end
end
idx=strmatch('Exchange/demand reaction', model.subSystems);
c=0;
for i=1:length(idx)
if model.lb(idx(i))~=0
c=c+1;
uptakes{c}=model.rxns{idx(i)};
end
end
modelalter = model;
modelalter = changeRxnBounds(modelalter, uptakes, 0, 'l');
% The alternative way to do that, in case you were using another large model,
% that does not contain defined Subsystem is
% to find uptake exchange reactions with following codes:
% [selExc, selUpt] = findExcRxns(model);
% uptakes = model.rxns(selUpt);
% Selecting from the exchange uptake reactions those
% which contain at least 1 carbon in the metabolites included in the reaction:
% subuptakeModel = extractSubNetwork(model, uptakes);
% hiCarbonRxns = findCarbonRxns(subuptakeModel,1);
% Closing the uptake of all the carbon sources
% modelalter = model;
% modelalter = changeRxnBounds(modelalter, hiCarbonRxns, 0, 'l');

Robustness analysis

Robustness analysis is applied to estimate and visualise how changes in the concentration of an environmental parameter (exchange rate) or internal reaction effect on the objective [2]. If we are interested in varying between two values, i.e., and , we can solve l optimisation problems:
The function robustnessAnalysis() is used for this analysis:
% [controlFlux, objFlux] = robustnessAnalysis(model, controlRxn, nPoints,...
% plotResFlag, objRxn,objType)
where inputs are a COBRA model, a reaction that has been analysed and optional inputs:
% INPUTS
% model COBRA model structure
% controlRxn Reaction of interest whose value is to be controlled
%
% OPTIONAL INPUTS
% nPoints Number of points to show on plot (Default = 20)
% plotResFlag Plot results (Default true)
% objRxn Objective reaction to be maximized
% (Default = whatever is defined in model)
% objType Maximize ('max') or minimize ('min') objective
% (Default = 'max')
%
% OUTPUTS
% controlFlux Flux values within the range of the maximum and minimum for
% a reaction of interest
% objFlux Optimal values of objective reaction at each control
% reaction flux value
Here, we will investigate how robust the maximal ATP production of the network (i.e., the maximal flux through 'DM_atp_c_') is with respect to varying glucose uptake rates and fixed oxygen uptake.
modelrobust = modelalter;
modelrobust = changeRxnBounds(modelrobust, 'EX_o2[e]', -17, 'b');
AtpRates = zeros(21, 1);
for i = 0:20
modelrobust = changeRxnBounds(modelrobust, 'EX_glc_D[e]', -i, 'b');
modelrobust = changeObjective(modelrobust, 'DM_atp_c_');
FBArobust = optimizeCbModel(modelrobust, 'max');
AtpRates(i+1) = FBArobust.f;
end
plot (1:21, AtpRates)
Warning: MATLAB has disabled some advanced graphics rendering features by switching to software OpenGL. For more information, click here.
xlabel('Flux through EX-glc-D[e]')
ylabel('Objective function')
We can also investigate the robustness of the maximal ATP production when the available glucose amount is fixed, while different levels of oxygen are available.
modelrobustoxy = modelalter;
modelrobustoxy = changeRxnBounds(modelrobustoxy, 'EX_glc_D[e]', -20, 'b');
AtpRatesoxy = zeros(21, 1);
for i = 0:20
modelrobustoxy = changeRxnBounds(modelrobustoxy, 'EX_o2[e]', -i, 'b');
modelrobustoxy = changeObjective(modelrobustoxy, 'DM_atp_c_');
FBArobustoxy = optimizeCbModel(modelrobustoxy, 'max');
AtpRatesoxy(i+1) = FBArobustoxy.f;
end
plot (1:21, AtpRatesoxy)
xlabel('Flux through EX-o2[e]')
ylabel('Objective function')
Performs robustness analysis for a pair of reactions of interest and an objective of interest. The double robust analysis is implemented with the function doubleRobustnessAnalysis().
% [controlFlux1, controlFlux2, objFlux] = doubleRobustnessAnalysis(model,...
% controlRxn1, controlRxn2, nPoints, plotResFlag, objRxn, objType)
The inputs are a COBRA model, two reactions for the analysis and optional inputs:
%INPUTS
% model COBRA model to analyse,
% controlRxn1 The first reaction for the analysis,
% controlRxn2 The second reaction for the analysis;
%
%OPTIONAL INPUTS
% nPoints The number of flux values per dimension (Default = 20)
% plotResFlag Indicates whether the result should be plotted (Default = true)
% objRxn is objective to be used in the analysis (Default = whatever
% is defined in model)
% objType Direction of the objective (min or max)
% (Default = 'max')
modeldrobustoxy = modelalter;
modeldrobustoxy = changeRxnBounds(modeldrobustoxy, 'EX_glc_D[e]', -20, 'l');
modeldrobustoxy = changeRxnBounds(modeldrobustoxy, 'EX_o2[e]', -17, 'l');
[controlFlux1, controlFlux2, objFlux] = doubleRobustnessAnalysis(modeldrobustoxy,...
'EX_glc_D[e]', 'EX_o2[e]', 10, 1, 'DM_atp_c_', 'max')
Double robustness analysis in progress ... 1% [ ]2% [ ]3% [. ]4% [. ]5% [.. ]6% [.. ]7% [.. ]8% [... ]9% [... ]10% [.... ]11% [.... ]12% [.... ]13% [..... ]14% [..... ]15% [...... ]16% [...... ]17% [...... ]18% [....... ]19% [....... ]20% [........ ]21% [........ ]22% [........ ]23% [......... ]24% [......... ]25% [.......... ]26% [.......... ]27% [.......... ]28% [........... ]28% [........... ]30% [............ ]31% [............ ]32% [............ ]33% [............. ]34% [............. ]35% [.............. ]36% [.............. ]37% [.............. ]38% [............... ]39% [............... ]40% [................ ]41% [................ ]42% [................ ]43% [................. ]44% [................. ]45% [.................. ]46% [.................. ]47% [.................. ]48% [................... ]49% [................... ]50% [.................... ]51% [.................... ]52% [.................... ]53% [..................... ]54% [..................... ]55% [...................... ]56% [...................... ]56% [...................... ]57% [...................... ]59% [....................... ]60% [........................ ]61% [........................ ]62% [........................ ]63% [......................... ]64% [......................... ]65% [.......................... ]66% [.......................... ]67% [.......................... ]68% [........................... ]69% [........................... ]70% [............................ ]71% [............................ ]72% [............................ ]73% [............................. ]74% [............................. ]75% [.............................. ]76% [.............................. ]77% [.............................. ]78% [............................... ]79% [............................... ]80% [................................ ]81% [................................ ]82% [................................ ]83% [................................. ]84% [................................. ]85% [.................................. ]86% [.................................. ]87% [.................................. ]88% [................................... ]89% [................................... ]90% [.................................... ]91% [.................................... ]92% [.................................... ]93% [..................................... ]94% [..................................... ]95% [...................................... ]96% [...................................... ]97% [...................................... ]98% [....................................... ]99% [....................................... ]100% [........................................]
controlFlux1 =
-20.0000 -17.7225 -15.4451 -13.1676 -10.8902 -8.6127 -6.3353 -4.0578 -1.7804 0.4971
controlFlux2 =
-17.0000 -15.1111 -13.2222 -11.3333 -9.4444 -7.5556 -5.6667 -3.7778 -1.8889 0.0000
objFlux =
126.2944 116.7061 107.1179 97.5296 87.9413 78.3531 68.7648 59.1765 49.5883 40.0000 121.7395 112.1512 102.5630 92.9747 83.3864 73.7982 64.2099 54.6216 45.0334 35.4451 117.1846 107.5963 98.0081 88.4198 78.8315 69.2433 59.6550 50.0667 40.4785 30.8902 112.6297 103.0414 93.4532 83.8649 74.2766 64.6884 55.1001 45.5118 35.9236 26.3353 108.0748 98.4865 88.8983 79.3100 69.7217 60.1335 50.5452 40.9569 31.3686 21.7804 103.5199 93.9316 84.3434 74.7551 65.1668 55.5785 45.9903 36.4020 26.8137 17.2255 98.9650 89.3767 79.7884 70.2002 60.6119 51.0236 41.4354 31.8471 22.2588 12.6706 94.4101 84.8218 75.2335 65.6453 56.0570 46.4687 36.8805 27.2922 17.7039 8.1157 87.7466 78.7732 69.7997 60.8263 51.5021 41.9138 32.3256 22.7373 13.1490 3.5608 33.5029 0 0 0 0 0 0 0 0 0

Phenotypic phase plane analysis (PhPP)

The PhPP is a method for describing in two or three dimensions, how the objective function would change if additional metabolites were given to the model [3].
Essentially PhPP performs a doubleRobustnessAnalysis(), with the difference that shadow prices are retained. The code is as follows-
modelphpp = modelalter;
ATPphppRates = zeros(21);
for i = 0:10
for j = 0:20
modelphpp = changeRxnBounds(modelphpp, 'EX_glc_D[e]', -i, 'b');
modelphpp = changeRxnBounds(modelphpp, 'EX_o2[e]', -j, 'b');
modelphpp = changeObjective(modelphpp, 'DM_atp_c_');
FBAphpp = optimizeCbModel(modelphpp, 'max');
ATPphppRates(i+1,j+1) = FBAphpp.f;
end
end
surfl(ATPphppRates) % 3d plot
xlabel('Flux through EX-glc-D[e]')
ylabel('Flux through EX-o2[e]')
zlabel('Objective function')
To generate a 2D plot: pcolor(ATPphppRates)
Alternatively, use the function phenotypePhasePlane(). This function also draws the line of optimality, as well as the shadow prices of the metabolites from the two control reactions. In this case, control reactions are 'EX_glc_D[e]' and 'EX_o2[e]'. The line of optimality signifies the state wherein, the objective function is optimal. In this case it is 'DM_atp_c_'.
modelphpp = changeObjective (modelphpp, 'DM_atp_c_');
[growthRates, shadowPrices1, shadowPrices2] = phenotypePhasePlane(modelphpp,...
'EX_glc_D[e]', 'EX_o2[e]');
generating PhPP

REFERENCES

[1] Noronha A., et al. (2017). ReconMap: an interactive visualization of human metabolism. Bioinformatics., 33 (4): 605-607.
[2] Edwards, J.S. and and Palsson, B. Ø. (2000). Robustness analysis of the Escherichia coli metabolic network. Biotechnology Progress, 16(6):927-39.
[3] Edwards, J.S., Ramakrishna, R. and and Palsson, B. Ø. (2002). Characterizing the metabolic phenotype: A phenotype phase plane analysis. Biotechnology and Bioengineering, 77:27-36.